Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(7): e2250162, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086046

RESUMO

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition in childhood. The disease etiology remains largely unknown; however, a key role in JIA pathogenesis is surely mediated by T cells. T-lymphocytes activity is controlled via signals, known as immune checkpoints. Delivering an inhibitory signal or blocking a stimulatory signal to achieve immune suppression is critical in autoimmune diseases. However, the role of immune checkpoints in chronic inflammation and autoimmunity must still be deciphered. In this study, we investigated at the single-cell level the feature of T cells in JIA chronic inflammation, both at the transcriptome level via single-cell RNA sequencing and at the protein level by flow cytometry. We found that despite the heterogeneity in the composition of synovial CD4+ and CD8+ T cells, those characterized by PD-1 expression were clonally expanded tissue-resident memory (Trm)-like cells and displayed the highest proinflammatory capacity, suggesting their active contribution in sustaining chronic inflammation in situ. Our data support the concept that novel therapeutic strategies targeting PD-1 may be effective in the treatment of JIA. With this approach, it may become possible to target overactive T cells regardless of their cytokine production profile.


Assuntos
Artrite Juvenil , Humanos , Líquido Sinovial , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Inflamação
2.
Immunol Lett ; 255: 21-31, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848960

RESUMO

Previous evidences show that Musculin (Msc), a repressor member of basic helix-loop-helix transcription factors, is responsible in vitro for the low responsiveness of human Th17 cells to the growth factor IL-2, providing an explanation for Th17 cells rarity in inflammatory tissue. However, how and to what extent Musculin gene can regulate the immune response in vivo in an inflammatory context is still unknown. Here, exploiting two animal models of inflammatory diseases, the Experimental Autoimmune Encephalomyelitis (EAE) and the dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect of Musculin gene knock-out on clinical course, performing also a deep immune phenotypical analysis on T cells compartment and an extended microbiota analysis in colitis-sick mice. We found that, at least during the early phase, Musculin gene has a very marginal role in modulating both the diseases. Indeed, the clinical course and the histological analysis showed no differences between wild type and Msc knock-out mice, whereas immune system appeared to give rise to a regulatory milieu in lymph nodes of EAE mice and in the spleen of DSS colitis-sick mice. Moreover, in the microbiota analysis, we found irrelevant differences between wild type and Musculin knock-out colitis-sick mice, with a similar bacterial strains' frequency and diversity after the DSS treatment. This work strengthened the idea of a negligible Msc gene involvement in these models.


Assuntos
Colite , Encefalomielite Autoimune Experimental , Microbiota , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Colite/induzido quimicamente , Colite/genética , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Células Th17
3.
Biomedicines ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552017

RESUMO

Background: People Living With HIV (PLWH), with advanced disease, lower CD4+ T cell counts or an unsuppressed HIV viral load can have a suboptimal vaccine response. For this reason, in the current COVID-19 pandemic, they represent a prioritized population for the SARS-CoV-2 fourth (or second booster) vaccine dose. This work aims to investigate the effects of a second booster on the reactivation of the spike-specific humoral and cell-mediated immune responses in PLWH. Methods: A total of eight PLWH, who received a fourth dose of the original mRNA vaccines were enrolled. They were evaluated before and then 7 days, 1 month and 2 months after the injection. The humoral response was assessed via a chemiluminescent immunoassay. Immunophenotyping and the functional evaluation of the SARS-CoV-2-specific cellular immune responses were performed via flow cytometry. Results: Anti-spike IgG levels were above the cut-off value for all subjects at all timepoints. The spike-specific CD4+ T cell response was reactivated one week after the fourth vaccine dose, and on average declined at two months post-vaccination. A similar trend was observed for the spike-specific B cells. A low percentage of spike-specific CD4+ T cells was activated by the B.1.1.529 BA.1 Omicron-spike mutated peptides, and the majority of these cells were reactive to the conserved portions of the spike protein. Similarly, the majority of the spike-specific memory B cells were able to bind both Wuhan and Omicron-spike entire protein. Conclusions: Spike-specific adaptive immune responses are transiently reactivated in PLWH following the fourth mRNA vaccine dose. The breadth of the immune responses to the mutated spike protein provides insight on the possible cross-reactivity for the SARS-CoV-2 variants of concern (VOCs).

4.
J Clin Immunol ; 42(7): 1379-1391, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809212

RESUMO

BACKGROUND AND PURPOSE: Waning immunity and the surge of SARS-CoV-2 variants are responsible for breakthrough infections, i.e., infections in fully vaccinated individuals. Although the majority of vaccinated infected subjects report mild or no symptoms, some others require hospitalization. The clinical and immunological features of vaccinated hospitalized COVID-19 patients are currently unknown. METHODS: Twenty-nine unvaccinated and 36 vaccinated hospitalized COVID-19 patients were prospectively enrolled and clinical and laboratory data were gathered. Immunophenotyping of leukocytes' subsets, T and B cell SARS-CoV-2-specific responses were evaluated via flow cytometry. Anti-IFN-α autoantibodies were measured via ELISA. RESULTS: Despite vaccinated patients were older and with more comorbidities, unvaccinated subjects showed higher levels of pro-inflammatory markers, more severe disease, and increased mortality rate. Accordingly, they presented significant alterations in the circulating leukocyte composition, typical of severe COVID-19. Vaccinated patients displayed higher levels of anti-Spike IgGs and Spike-specific B cells. Of all participants, survivors showed higher levels of anti-Spike IgGs and Spike-specific CD4+ T cells than non-survivors. At hospital admission, 6 out of 65 patients (9.2%) displayed high serum concentrations of autoantibodies targeting IFN-α. Remarkably, 3 were unvaccinated and eventually died, while the other 3 were vaccinated and survived. CONCLUSION: Despite more severe pre-existing clinical conditions, vaccinated patients have good outcome. A rapid activation of anti-SARS-CoV-2-specific immunity is fundamental for the resolution of the infection. Therefore, prior immunization through vaccination provides a significant contribution to prevention of disease worsening and can even overcome the presence of high-risk factors (i.e., older age, comorbidities, anti-IFN-α autoantibodies).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Hospitalização , Autoanticorpos
5.
Front Immunol ; 13: 801431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154116

RESUMO

Although accumulating data have investigated the effect of SARS-CoV-2 mutations on antibody neutralizing activity, less is known about T cell immunity. In this work, we found that the ancestral (Wuhan strain) Spike protein can efficaciously reactivate CD4+ T cell memory in subjects with previous Alpha variant infection. This finding has practical implications, as in many countries only one vaccine dose is currently administered to individuals with previous COVID-19, independently of which SARS-CoV-2 variant was responsible of the infection. We also found that only a minority of Spike-specific CD4+ T cells targets regions mutated in Alpha, Beta and Delta variants, both after natural infection and vaccination. Finally, we found that the vast majority of Spike-specific CD4+ T cell memory response induced by natural infection or mRNA vaccination is conserved also against Omicron variant. This is of importance, as this newly emerged strain is responsible for a sudden rise in COVID-19 cases worldwide due to its increased transmissibility and ability to evade antibody neutralization. Collectively, these observations suggest that most of the memory CD4+ T cell response is conserved against SARS-CoV-2 variants of concern, providing an efficacious line of defense that can protect from the development of severe forms of COVID-19.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35139036

RESUMO

BACKGROUNDImmunization against SARS-CoV-2, the causative agent of COVID-19, occurs via natural infection or vaccination. However, it is currently unknown how long infection- or vaccination-induced immunological memory will last.METHODSWe performed a longitudinal evaluation of immunological memory to SARS-CoV-2 up to 1 year after infection and following mRNA vaccination in naive individuals and individuals recovered from COVID-19 infection.RESULTSWe found that memory cells are still detectable 8 months after vaccination, while antibody levels decline significantly, especially in naive individuals. We also found that a booster injection is efficacious in reactivating immunological memory to spike protein in naive individuals, whereas it was ineffective in previously SARS-CoV-2-infected individuals. Finally, we observed a similar kinetics of decay of humoral and cellular immunity to SARS-CoV-2 up to 1 year following natural infection in a cohort of unvaccinated individuals.CONCLUSIONShort-term persistence of humoral immunity, together with the reduced neutralization capacity versus the currently prevailing SARS-CoV-2 variants, may account for reinfections and breakthrough infections. Long-lived memory B and CD4+ T cells may protect from severe disease development. In naive individuals, a booster dose restored optimal anti-spike immunity, whereas the needs for vaccinated individuals who have recovered from COVID-19 have yet to be defined.FUNDINGThis study was supported by funds to the Department of Experimental and Clinical Medicine, University of Florence (Project Excellence Departments 2018-2022), the University of Florence (project RICTD2122), the Italian Ministry of Health (COVID-2020-12371849), and the region of Tuscany (TagSARS CoV 2).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD4-Positivos , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , Glicoproteína da Espícula de Coronavírus , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...