Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Eur J Med Chem ; 269: 116332, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508120

RESUMO

The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 µM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 µM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 µM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.


Assuntos
Compostos de Bifenilo , Diabetes Mellitus Tipo 2 , Quinolinas , Animais , Ratos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Imidazóis/farmacologia , Quinolinas/farmacologia , Quinolinas/química , Acetamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
3.
Sci Rep ; 14(1): 388, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172167

RESUMO

Regarding the important role of α-glucosidase enzyme in the management of type 2 diabetes mellitus, the current study was established to design and synthesize aryl-quinoline-4-carbonyl hydrazone bearing different 2-methoxyphenoxyacetamide (11a-o) and the structure of all derivatives was confirmed through various techniques including IR, 1H-NMR, 13C-NMR and elemental analysis. Next, the α-glucosidase inhibitory potentials of all derivatives were evaluated, and all compounds displayed potent inhibition with IC50 values in the range of 26.0 ± 0.8-459.8 ± 1.5 µM as compared to acarbose used as control, except 11f and 11l. Additionally, in silico-induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the newly synthesized compounds over the active site of α-glucosidase.


Assuntos
Diabetes Mellitus Tipo 2 , Quinolinas , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Dinâmica Molecular , alfa-Glucosidases/metabolismo , Hidrazonas/farmacologia , Hidrazonas/química , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Quinolinas/química , Cinética , Estrutura Molecular
4.
Sci Rep ; 14(1): 501, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177164

RESUMO

Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target α-glucosidase, which catalyzes starch hydrolysis in the intestine. In an attempt to find potential α-glucosidase inhibitors, a series of twenty new quinoline linked benzothiazole hybrids (8a-t) were synthesized in good yields from suitable reaction procedures and their chemical structures were analyzed by 1HNMR, 13CNMR, IR, and ESI-MS analysis. The synthesized derivatives further screened for their activity against α-glucosidase. Among them, compounds 8b, 8h, 8n and 8o exhibited remarkable α-glucosidase inhibitory activity with IC50 values ranging from 38.2 ± 0.3 to 79.9 ± 1.2 µM compared with standard drug acarbose (IC50 = 750.0 ± 2.0 µM). Enzyme kinetic studies of the most active compound (8h) indicated a non-competitive inhibition with Ki value of 38.2 µM. Moreover, the homology modeling, molecular docking and molecular dynamics simulation studies were conducted to reveal key interactions between the most active compound 8h and the targeted enzyme. These results are complementary to the experimental observations. In order to predict the druggability of the novel derivatives, the pharmacokinetic properties were also applied. These findings could be useful for the design and development of new α-glucosidase inhibitors.


Assuntos
Inibidores de Glicosídeo Hidrolases , Quinolinas , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Cinética , Quinolinas/farmacologia , Quinolinas/química
5.
Bioorg Chem ; 144: 107106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244380

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by high blood sugar levels. It was shown that modulating the activity of α-glucosidase, an enzyme involved in carbohydrate digestion and absorption, can improve blood sugar control and overall metabolic health in individuals with T2DM. As a result, in the current study, a series of imidazole bearing different substituted thioquinolines were designed and synthesized as α-glucosidase inhibitors. All derivatives exhibited significantly better potency (IC50 = 12.1 ± 0.2 to 102.1 ± 4.9 µM) compared to the standard drug acarbose (IC50 = 750.0 ± 5.0 µM). 8g as the most potent analog, indicating a competitive inhibition with Ki = 9.66 µM. Also, the most potent derivative was subjected to molecular docking and molecular dynamic simulation against α-glucosidase to determine its mode of action in the enzyme and study the complex's behavior over time. In vivo studies showed that 8g did not cause acute toxicity at 2000 mg/kg doses. Additionally, in a diabetic rat model, treatment with 8g significantly reduced fasting blood glucose levels and decreased blood glucose levels following sucrose loading compared to acarbose, a standard drug used for blood sugar control. The findings suggest that the synthesized compound 8g holds promise as an α-glucosidase inhibitor for improving blood sugar control and metabolic health.


Assuntos
Diabetes Mellitus Tipo 2 , Nitroimidazóis , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , alfa-Glucosidases/metabolismo , Acarbose/farmacologia , Acarbose/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Nitroimidazóis/uso terapêutico , Relação Estrutura-Atividade , Estrutura Molecular
6.
Sci Rep ; 14(1): 208, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167448

RESUMO

Analysis of food additives is highly significant in the food industry and directly related to human health. This investigation into the removal efficiency of sunset yellow as an azo dye in fruit juices using Chitosan-nickel ferrite nanoparticles (Cs@NiFe2O4 NPs). The nanoparticles were synthesized and characterized using various techniques. The effective parameters for removing sunset yellow were optimized using the response surface methodology (RSM) based on the central composite design (CCD). Under the optimum conditions, the highest removal efficiency (94.90%) was obtained for the initial dye concentration of 26.48 mg L-1 at a pH of 3.87, a reaction time of 67.62 min, and a nanoparticle dose of 0.038 g L-1. The pseudo-second-order kinetic model had a better fit for experimental data (R2 = 0.98) than the other kinetic models. The equilibrium adsorption process followed the Freundlich isotherm model with a maximum adsorption capacity of 212.766 mg g-1. The dye removal efficiency achieved for industrial and traditional fruit juice samples (91.75% and 93.24%), respectively, confirmed the method's performance, feasibility, and efficiency. The dye adsorption efficiency showed no significant decrease after five recycling, indicating that the sorbent has suitable stability in practical applications. variousThe synthesized nanoparticles can be suggested as an efficient sorbent to remove the sunset yellow dye from food products.


Assuntos
Quitosana , Poluentes Químicos da Água , Humanos , Quitosana/química , Sucos de Frutas e Vegetais , Concentração de Íons de Hidrogênio , Compostos Azo/química , Adsorção , Cinética , Poluentes Químicos da Água/química
7.
Biomater Sci ; 12(3): 674-690, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38093666

RESUMO

Ventilator-associated pneumonia (VAP) is a severe hospital-acquired infection that endangers patients' treatment in intensive care units (ICUs). One of the leading causes of VAP is biofilm formation on the endotracheal tube (ETT) during ventilation. This study reports a combination of laccase-gadolinium phosphate hybrid nanoparticles (laccase@GdPO4·HNPs) and enzyme mediator with an antibiofilm property coated on the surface of the ETT. The hybrid nanostructures were fabricated through a simple, rapid, and facile laccase immobilization method, resulting in efficiency and yield percentages of 82 ± 6% and 83 ± 5%, respectively. The surface of the ETT was then functionalized and coated with the constructed HNP/catechol. The layered ETT was able to reduce the surface adhesion of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by 82.1%, 84.5%, and 77.1%, respectively. The prepared ETT did not affect the viability of human lung epithelial cells L929 and A549 at concentrations of 1-5 mg mL-1. The layered ETT produced a strong computed tomography (CT) signal in comparison with iobitridol. The HNP/catechol-coated ETT exhibited a Gd3+ release of 0.45 ppm over 72 h, indicating reduced risks of cytotoxicity arising from the metal ions. In this research we develop a biofilm-resistant and contrasting agent-based ETT coated with green synthesized laccase@GdPO4·HNPs.


Assuntos
Nanopartículas , Pneumonia Associada à Ventilação Mecânica , Humanos , Gadolínio , Lacase , Fosfatos , Intubação Intratraqueal , Biofilmes , Catecóis
8.
Int J Biol Macromol ; 257(Pt 1): 128493, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043661

RESUMO

A novel, dual-faced, and hierarchical type of Janus hybrid structures (JHSs) was assembled through an in situ growing of lipase@cobalt phosphate sheets on the laccase@copper phosphate sponge-like structures. The chemical and structural information of prepared JHSs was investigated by Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The catalytic activity, storage stability, and reusability of JHSs were then investigated. The SEM-EDX analysis clearly confirmed the asymmetric morphology of the fabricated JHSs with two distinct metal distributions. Under optimized synthesis conditions, the prepared JHSs showed 97.8 % and 100 % of laccase and lipase activity, respectively. Compared to the free biocatalysts, the immobilization resulted in ~ a 2-fold increase in laccase and lipase stability at temperatures of >40 °C. The fabricated JHSs maintained 61 % and 90 % of their original laccase and lipase activity upon 12 successive repetition cycles. Up to 80 % of Reactive Blue-19 (RB-19), an anthraquinone-based vinyl sulphone dye, was removed after 5 h treatment with the prepared JHSs (50 % higher than the free forms of laccase and lipase). The dye removal data fitted very well on the pseudo-second-order kinetic model with a rate constant of 0.8 g mg-1 h-1. Following the bioremoval process, bacterial toxicity also decreased by about 70 %. Therefore, the prepared JHSs provide a facile and sustainable approach for the decolorization, biotransformation, and detoxification of RB-19 by integrating enzymatic oxidation and hydrolysis.


Assuntos
Enzimas Imobilizadas , Lacase , Enzimas Imobilizadas/química , Lacase/química , Lipase , Antraquinonas , Fosfatos
9.
Iran J Pharm Res ; 22(1): e136661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116564

RESUMO

Background: Spirulina is a cyanobacteria species containing various bioactive compounds. Spirulina is a known source of nutrients in some traditional diets. Different activities have been reported for various extracts of S. platensis. Objectives: In this study, the polysaccharide content of culture media and biomass extract of one species of Spirulina was partially purified, and its analgesic and anti-inflammatory effects were evaluated. Methods: Spirulina platensis PCST5 was cultured in a sterile Zarouk medium at 27°C and 16/8h of light/ dark exposure cycle for 25 days. Then, the polysaccharide content of biomass and cell-free culture medium samples (BPSs and CFPSs, respectively) was partially purified. The analgesic and anti-inflammatory effects were evaluated using animal models. Results: 16S rRNA gene analysis confirmed that the organism was genetically similar to Spirulina platensis. The CFPSs (30 and 100 mg/kg) and BPSs (30 mg/kg) significantly reduced pain-related behaviors in rats. Similarly, all samples could significantly reduce carrageenan-induced paw inflammation volume compared with the control group. Our results suggest Spirulina's polysaccharide fractions (CFPSs and BPSs) had significant analgesic and anti-inflammatory effects. Conclusions: Since Spirulina is a readily available source of bioactive compounds, finding such potent anti-inflammatory and anti-nociceptive compounds can provide promising leads for novel drug development.

10.
Sci Rep ; 13(1): 15777, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737259

RESUMO

A novel nanomagnet modified with nickel ferrite nanoparticles (NPs) coated with hybrid chitosan (Cs-NiFe2O4) was synthesized using the co-precipitation method. The resulting nanomagnets were characterized using various techniques. The size of the nanomagnetic particles was estimated to be about 40 nm based on the transmission electron microscopy (TEM) image and X-ray diffraction analysis (XRD) pattern (using the Debye-Scherrer equation). Scanning electron microscopy (SEM) images indicated that the surface of Cs-NiFe2O4 NPs is flatter and smoother than the uncoated NiFe2O4 NPs. According to value stream mapping (VSM) analysis, the magnetization value of Cs-NiFe2O4 NPs (17.34 emu/g) was significantly lower than NiFe2O4 NPs (40.67 emu/g). The Cs-NiFe2O4 NPs indicated higher antibacterial properties than NiFe2O4 NPs and Cs. The minimum inhibitory concentrations of Cs-NiFe2O4 NPs against S. aureus and E. coli were 128 and 256 mg/mL, respectively. Antioxidant activity (evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test) for NiFe2O4 NPs and Cs-NiFe2O4 NPs at the concentration of 100 µg/mL were 35% and 42%, respectively. Consequently, the synthesized Cs-NiFe2O4 NPs can be proposed as a viable material for biomedical applications.


Assuntos
Quitosana , Nanocompostos , Antioxidantes/farmacologia , Quitosana/farmacologia , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Fenômenos Magnéticos
11.
Sci Rep ; 13(1): 15672, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735489

RESUMO

α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 µM to 308.33 ± 0.06 µM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 µM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 µM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Acarbose/farmacologia , Quinazolinas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cinética , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae , alfa-Glucosidases
12.
Future Med Chem ; 15(18): 1651-1668, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37727987

RESUMO

Background: Diabetes mellitus (DM) is a chronic disorder, considered to be a major global health challenge in the 21st century. α-Glucosidase enzyme is a well-known drug target to treat Type II DM. Methods: A new library of biphenyl-substituted triazines was synthesized and confirmed by various spectroscopic techniques. Results: All compounds showed potent α-glucosidase inhibitory activity, with IC50 values ranging from 35.35 ± 0.34 to 564.41 ± 0.91 µM, as the standard acarbose, IC50 value of 750.7 ± 0.13 µM. Our in silico study has predicted key interactions with the enzyme's active site. Drug-likeness and absorption, distribution, metabolism, excretion and toxicity were also studied. Conclusion: This study has identified a range of potential hits against the α-glucosidase enzyme that may serve as antidiabetic agents after further investigations.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Hipoglicemiantes/química , Cinética , Triazinas/farmacologia , Triazinas/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Estrutura Molecular
13.
Sci Rep ; 13(1): 12397, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524733

RESUMO

α-Glucosidase as a carbohydrate-hydrolase enzyme is a crucial therapeutic target for type 2 diabetes. In this work, benzo[d]imidazole-amide containing 1,2,3-triazole-N-arylacetamide derivatives 8a-n were synthesized and evaluated for their inhibitory activity against α-glucosidase. In vitro α-glucosidase inhibition assay demonstrated that more than half of the title compounds with IC50 values in the range of 49.0-668.5 µM were more potent than standard inhibitor acarbose (IC50 = 750.0 µM). The most promising inhibitor was N-2-methylphenylacetamid derivative 8c. Kinetic study revealed that compound 8c (Ki = 40.0 µM) is a competitive inhibitor against α-glucosidase. Significantly, molecular docking and molecular dynamics studies on the most potent compound showed that this compound with a proper binding energy interacted with important amino acids of the α-glucosidase active site. Study on cytotoxicity of the most potent compounds 8c, 8e, and 8g demonstrated that these compounds did not show cytotoxic activity against the cancer and normal cell lines MCF-7 and HDF, respectively. Furthermore, the ADMET study predicted that compound 8c is likely to be orally active and non-cytotoxic.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Humanos , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Triazóis/química , Imidazóis/química , Relação Estrutura-Atividade , Estrutura Molecular , Cinética
14.
ACS Omega ; 8(26): 23412-23424, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426262

RESUMO

In this study, a novel series of pyrano[3,2-c]quinoline-1,2,3-triazole hybrids 8a-o were synthesized and evaluated against the α-glucosidase enzyme. All compounds showed significant in vitro inhibitory activity (IC50 values of 1.19 ± 0.05 to 20.01 ± 0.02 µM) compared to the standard drug acarbose (IC50 = 750.0 µM). Among them, 2-amino-4-(3-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile (compound 8k) demonstrated the best inhibitory effect toward α-glucosidase (IC50 = 1.19 ± 0.05 µM) with a competitive pattern of inhibition. Since compound 8k was synthesized as a racemic mixture, molecular docking and dynamics simulations were performed on R- and S-enantiomers of compound 8k. Based on the molecular docking results, both R- and S-enantiomers of compound 8k displayed significant interactions with key residues including catalytic triad (Asp214, Glu276, and Asp349) in the enzyme active site. However, an in silico study indicated that S- and R-enantiomers were inversely located in the enzyme active site. The R-enantiomer formed a more stable complex with a higher binding affinity to the active site of α-glucosidase than that of the S- enantiomer. The benzyl ring in the most stable complex ((R)-compound 8k) was located in the bottom of the binding site and interacted with the enzyme active site, while the pyrano[3,2-c]quinoline moiety occupied the high solvent accessible entrance of the active site. Thus, the synthesized pyrano[3,2-c]quinoline-1,2,3-triazole hybrids seem to be promising scaffolds for the development of novel α-glucosidase inhibitors.

15.
Environ Sci Pollut Res Int ; 30(41): 93970-93985, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523084

RESUMO

From the environmental point of view, azo dye industrial effluent is a major public health concern due to its toxic, carcinogenic, and teratogenic characteristics. On the other hand, using enzyme-based technologies offers a promising systematic and controllable method for removing synthetic dyes from wastewater. In the present study, yttrium (Y3+) phosphate was applied for the synthesis of hybrid nanoparticles (HNPs) consisting of laccase as the green catalyst. When the association of HNPs was fixed by glutaraldehyde (GA), three-dimensional cubic structures with the regular arrangement were provided. GA increased the reusability of the fabricated hybrid nanostructures (HNSs) up to 32 successive cycles. About 85% of Direct Blue-15 was removed after a 4 h-treatment using laccase@YPO4•HNPs and laccase@GA@YPO4•HNSs. The azo dye removal data were well-fitted with a pseudo-second-order model for both types of the prepared HNSs. For the model freshwater green alga Raphidocelis subcapitata, the half maximal effective concentration (EC50) of the dye decreased 10- and 100-fold after the removal with laccase@YPO4•HNPs and laccase@GA@YPO4•HNSs, respectively. GA-treated HNSs (250 U L-1) inhibited the biofilm formation by approximately 78%, 82%, and 79% for Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, respectively. Thus, the fabricated laccase@GA@YPO4•HNSs could be presented as a novel, efficient, and recyclable heterogeneous biocatalyst for wastewater treatment and clean-up.


Assuntos
Lacase , Nanoestruturas , Lacase/química , Ítrio , Fosfatos/farmacologia , Corantes/química , Escherichia coli , Compostos Azo/química
16.
Bioorg Chem ; 139: 106709, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37442042

RESUMO

Because of the colossal global burden of diabetes, there is an urgent need for more effective and safer drugs. We designed and synthesized a new series of aurone derivatives possessing phenylureido or bis-phenylureido moieties as α-glucosidase and α-amylase inhibitors. Most of the synthesized phenylureidoaurones have demonstrated superior inhibition activities (IC50s of 9.6-339.9 µM) against α-glucosidase relative to acarbose (IC50 = 750.0 µM) as the reference drug. Substitution of aurone analogues with two phenylureido substituents at the 5-position of the benzofuranone moiety and the 3' or 4' positions of the 2-phenyl ring resulted in compounds with almost 120-180 times more potent inhibitory activities than acarbose. The aurone analogue possessing two phenylureido substitutions at 5 and 4' positions (13) showed the highest inhibition activity with an IC50 of 4.2 ± 0.1 µM. Kinetic studies suggested their inhibition mode to be competitive. We also investigated the binding mode of the most potent compounds using the consensually docked 4D-QSAR methodology. Furthermore, these analogues showed weak-to-moderate non-competitive inhibitory activity against α-amylase. 5-Methyl substituted aurone with 4'-phenylureido moiety (6e) demonstrated the highest inhibition activity on α-amylase with an IC50 of 142.0 ± 1.6 µM relative to acarbose (IC50 = 108 ± 1.2 µM). Our computational studies suggested that these analogues interact with a hydrophilic allosteric site in α-amylase, located far from the enzyme active site at the N-terminal.

17.
Sci Rep ; 13(1): 8960, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268722

RESUMO

Herein, various N'-substituted benzylidene benzohydrazide-1,2,3-triazoles were designed, synthesized, and screened for their inhibitory activity toward α-glucosidase. The structure of derivatives was confirmed using 1H- and 13C-NMR, FTIR, Mass spectrometry, and elemental analysis. All derivatives exhibited good inhibition with IC50 values in the range of 0.01 to 648.90 µM, compared with acarbose as the positive control (IC50 = 752.10 µM). Among them, compounds 7a and 7h showed significant potency with IC50 values of 0.02 and 0.01 µM, respectively. The kinetic study revealed that they are noncompetitive inhibitors toward α-glucosidase. Also, fluorescence quenching was used to investigate the interaction of three inhibitors 7a, 7d, and 7h, with α-glucosidase. Accordingly, the binding constants, the number of binding sites, and values of thermodynamic parameters were determined for the interaction of candidate compounds toward the enzyme. Finally, the in silico cavity detection plus molecular docking was performed to find the allosteric site and key interactions between synthesized compounds and the target enzyme.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Triazóis/farmacologia , Triazóis/química , Estrutura Molecular
18.
BMC Complement Med Ther ; 23(1): 184, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270541

RESUMO

BACKGROUND: The plants from Salvia genus contain widely distributed species which have been used in folk medicine as well as pharmaceutical and food industries. METHODS: The chemical composition of 12 native Iranian Salvia species (14 plants) was identified using gas chromatography-mass spectrometry (GC-MS). Also, the inhibitory activity of all essential oils (EOs) was evaluated toward α-glucosidase and two types of cholinesterase (ChE) using spectrophotometric methods. The in vitro α-glucosidase inhibition assay was performed by the determination of p-nitrophenol (pNP) obtained from the enzymatic dissociation of p-nitrophenol-α-D-glucopyranoside (pNPG) as the substrate. In vitro ChE inhibitory assay was conducted based on the modified Ellman's procedure using the measurement of 5-thio-2-nitrobenzoic acid produced from the hydrolysis of thiocholine derivatives as the substrate, in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). RESULTS: Totally, 139 compounds were detected and caryophyllene oxide and trans-ß-caryophyllene were the most abundant compounds in all EOs. The yield of EOs extracted from the plants were also calculated in the range of 0.06 to 0.96% w/w. Herein, α-glucosidase inhibitory activity of 8 EOs was reported for the first time and among all, S. spinosa L. was found to be the most potent inhibitor (90.5 inhibition at 500 µg/mL). Also, the ChE inhibitory activity of 8 species was reported for the first time and our results showed that the BChE inhibitory effect of all EOs was more potent than that of AChE. The ChE inhibition assay indicated that S. mirzayanii Rech.f. & Esfand. collected from Shiraz was the most potent inhibitor (72.68% and 40.6% at the concentration of 500 µg/mL, toward AChE and BChE, respectively). CONCLUSIONS: It seems that native Salvia species of Iran could be considered in the development of anti-diabetic and anti-Alzheimer's disease supplements.


Assuntos
Óleos Voláteis , Salvia , Butirilcolinesterase/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Acetilcolinesterase , Irã (Geográfico) , Salvia/química , alfa-Glucosidases , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
19.
BMC Chem ; 17(1): 56, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37316931

RESUMO

BACKGROUND: A new series of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide hybrids 11a-o was designed based on molecular hybridization of the active pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized and evaluated against α-glucosidase. METHODS: The 15 various derivatives of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide scaffold were synthesized, purified, and fully characterized. These derivatives were evaluated against yeast α-glucosidase in vitro and in silico. ADMET properties of the most potent compounds were also predicted. RESULTS: All new derivatives 11a-o (IC50 values = 6.31 ± 0.03-49.89 ± 0.09 µM) are excellent α-glucosidase inhibitors in comparison to acarbose (IC50 value = 750.0 ± 10.0 µM) that was used as a positive control. Representatively, (E)-2-(4-((4-((2-(1H-indole-2-carbonyl)hydrazono)methyl) phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-methoxyphenyl)acetamide 11d with IC50 = 6.31 µM against MCF-7 cells, was 118.8-times more potent than acarbose. This compound is an uncompetitive inhibitor against α-glucosidase and showed the lowest binding energy at the active site of this enzyme in comparison to other potent compounds. Furthermore, computational calculations predicted that compound 11d can be an orally active compound. CONCLUSION: According to obtained data, compound 11d can be a valuable lead compound for further structural development and assessments to obtain effective and potent new α-glucosidase inhibitors.

20.
RSC Adv ; 13(28): 19243-19256, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377867

RESUMO

In this work, a new series of quinoline-quinazolinone-thioacetamide derivatives 9a-p were designed using a combination of effective pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized by simple chemical reactions and evaluated for their anti-α-glucosidase activity. Among the tested compounds, compounds 9a, 9f, 9g, 9j, 9k, and 9m demonstrated significant inhibition effects in comparison to the positive control acarbose. Particularly, compound 9g with inhibitory activity around 83-fold more than acarbose exhibited the best anti-α-glucosidase activity. Compound 9g showed a competitive type of inhibition in the kinetic study, and the molecular simulation studies demonstrated that this compound with a favorable binding energy occupied the active site of α-glucosidase. Furthermore, in silico ADMET studies of the most potent compounds 9g, 9a, and 9f were performed to predict their drug-likeness, pharmacokinetic, and toxicity properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...