Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 154(6): 3644-3659, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051523

RESUMO

An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.


Assuntos
Núcleo Coclear , Colículos Inferiores , Animais , Coelhos , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Eferentes/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
2.
J Acoust Soc Am ; 154(2): 602-618, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535429

RESUMO

Fricatives are obstruent sound contrasts made by airflow constrictions in the vocal tract that produce turbulence across the constriction or at a site downstream from the constriction. Fricatives exhibit significant intra/intersubject and contextual variability. Yet, fricatives are perceived with high accuracy. The current study investigated modeled neural responses to fricatives in the auditory nerve (AN) and inferior colliculus (IC) with the hypothesis that response profiles across populations of neurons provide robust correlates to consonant perception. Stimuli were 270 intervocalic fricatives (10 speakers × 9 fricatives × 3 utterances). Computational model response profiles had characteristic frequencies that were log-spaced from 125 Hz to 8 or 20 kHz to explore the impact of high-frequency responses. Confusion matrices generated by k-nearest-neighbor subspace classifiers were based on the profiles of average rates across characteristic frequencies as feature vectors. Model confusion matrices were compared with published behavioral data. The modeled AN and IC neural responses provided better predictions of behavioral accuracy than the stimulus spectra, and IC showed better accuracy than AN. Behavioral fricative accuracy was explained by modeled neural response profiles, whereas confusions were only partially explained. Extended frequencies improved accuracy based on the model IC, corroborating the importance of extended high frequencies in speech perception.


Assuntos
Fonética , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Som , Neurônios , Espectrografia do Som
3.
J Acoust Soc Am ; 153(4): 1994, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092921

RESUMO

Forward masking is generally greater for Gaussian noise (GN) than for low-fluctuation noise maskers, i.e., GN disruption. Because the minimal hearing loss that is associated with older age may affect GN disruption differently than more significant hearing loss, the current study explored the contribution of minimal hearing loss associated with older age to GN disruption. GN disruption was measured using three masker-signal delays (25, 75, and 150 ms) for three adult groups: younger participants with normal hearing (NH), older participants with minimal hearing loss, and older participants with sensorineural hearing loss. The role of underlying mechanisms was tested using a computational model for midbrain neurons. The primary result suggests that older listeners with mild threshold elevations that typically occur with age may be more susceptible to the deleterious effects of masker envelope fluctuations than younger listeners with NH. Results from the computational model indicate that there may be a larger influence of efferent feedback and saturation of inner hair cells on forward masking and GN disruption than previously considered.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Adulto , Humanos , Limiar Auditivo/fisiologia , Mascaramento Perceptivo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...