Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 220: 111954, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821184

RESUMO

As organisms age, the activity of the endocannabinoid system in the brain declines, coinciding with increased neuroinflammation and disrupted hypothalamic functions. Notably, cannabinoid receptors type-1 (CB1) are highly expressed in the ventromedial hypothalamic nucleus (VMH) within the mediobasal hypothalamus, a central area of neuroendocrine regulation. This study investigates whether the CB1 receptor influences age-related changes in a brain region-dependent manner. Therefore, we performed stereotaxic injections of rAAV1/2 expressing Cre recombinase in 2-month-old CB1flox/flox male animals to delete the CB1 gene and in CB1-deficient (CB1-STOP) mice to induce its re-expression. The intensity of pro-inflammatory glial activity, gonadotropin-releasing hormone (GnRH) and insulin-like growth factor-1 receptor (IGF-1R) expression was assessed in the hypothalamus of mice at 18-19 months of age. Site-specific CB1 receptor deletion induced pro-inflammatory glial activity and increased hypothalamic Igf1r mRNA expression. Unexpectedly, GnRH levels remained unaltered. Importantly, rescuing the receptor in null mutant animals had the opposite effect: it reduced pro-inflammatory glial activation and decreased Igf1r mRNA expression without affecting GnRH production. Overall, the study highlights the important role of the CB1 receptor in the VMH in reducing age-related inflammation and modulating IGF-1R signaling.


Assuntos
Neuroglia , Receptor CB1 de Canabinoide , Receptor IGF Tipo 1 , Transdução de Sinais , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor IGF Tipo 1/metabolismo , Camundongos , Neuroglia/metabolismo , Masculino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Camundongos Knockout , Envelhecimento/metabolismo , Peptídeos Semelhantes à Insulina
2.
Biomolecules ; 14(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254681

RESUMO

Objective: Previous studies have shown that the cleavage of Sirt1 contributes to the development of osteoarthritis (OA). In fact, OA was effectively abrogated by the intra-articular (IA) administration of two compounds, one blocking Sirt1 cleavage (CA074me) and the other activating Sirt1 (SRT1720), using a post-traumatically induced model (PTOA) in young female mice. In this study, we attempted to understand if this local treatment is effective in preventing age-associated OA (AOA) progression and symptoms. Design: A group of 17-month-old female C57BL/6J mice were IA administered with CA074me and/or SRT1720 or their combination. Joint histopathological analysis and bone histomorphometry were carried out, with an assessment of knee mechanical hyperalgesia. A serum analysis for NT/CT Sirt1 was carried out along with immunohistochemistry for articular cartilage to detect p16INK4A or γH2A.X. Similarly, meniscal cartilage was monitored for Lef1 and Col1a1 deposition. The data were compared for young female mice subjected to post-traumatic OA (PTOA). Results: Similar to PTOA, combination-treated AOA exhibited improved knee hyperalgesia, yet structural improvements were undetected, corresponding to unchanged NT/CT Sirt1 serum levels. Both AOA and PTOA exhibited unchanged staining for nuclear p16INK4A or γH2A.X and lacked a correlation with OA severity. Contrarily to PTOA, the combination treatment with AOA did not exhibit a local reduction in the Lef1 and Col1 targets. Conclusions: When targeting Sirt1 cleavage, the PTOA and AOA models exhibited a similar pain response to the combination treatment; however, they displayed diverse structural outcomes for joint-related damage, related to Lef1-dependent signaling. Interestingly, nuclear p16INK4A was unaffected in both models, regardless of the treatment's effectiveness. Finally, these findings highlight the variations in the responses between two highly researched OA preclinical models, reflecting OA pathophysiology heterogeneity and variations in gender-related drug-response mechanisms.


Assuntos
Cartilagem Articular , Osteoartrite , Sirtuína 1 , Animais , Feminino , Camundongos , Inibidor p16 de Quinase Dependente de Ciclina , Hiperalgesia , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Osteoartrite/etiologia , Sirtuína 1/efeitos dos fármacos
3.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552848

RESUMO

BACKGROUND: In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model. METHODS: Initially, we assessed the selectivity of CB2 using a Gs-protein receptor cAMP potency assay, which was also validated for antagonistic effects dependent on the Gi-protein receptor cAMP pathway. Based on EC50 values, 1D was selected for a zymosan inflammatory pain model. Next, 1D was administered in two doses intra-articularly (IA), in a post-traumatic medial meniscal tear (MMT, Lewis rats) model, and compared to sham, vehicle, and a positive control consisting of fibroblast growth factor 18 (FGF18) administration. The histopathological assessment was carried out according to the Osteoarthritis Research Society International (OARSI) guidelines for rat models following 28 days post-MMT. RESULTS: The G protein receptor assays confirmed that both 1B and 1D possess CB2 agonistic effects in cell lines and in chondrocytes. Co-administering a CB2 antagonists to 25 mg/kg 1D in a paw inflammatory pain model abolished 1D-related anti-swelling effect and partially abolishing its analgesic effects. Using an MMT model, the high dose (i.e., 24 µg) of 1D administered via IA route, exhibited reduced cartilage damage. Particularly, this dose of 1D exhibited a 30% improvement in cartilage degeneration (zonal/total tibial scores) and lesion depth ratios (44%), comparable to the FGF18 positive control. Synovitis scores remained unaffected and histopathologic evaluation of subchondral bone damage did not suggest that 1D treatment changed the load-bearing ability of the rats. Contrary to the anabolic effect of FGF18, synovial inflammation was observed and was accompanied by increased osteophyte size. CONCLUSION: The structural histopathological analysis supports a disease-modifying effect of IA-administered 1D compound without any deleterious effects on the joint structure.


Assuntos
Osteoartrite , Ratos , Camundongos , Animais , Zimosan , Ratos Endogâmicos Lew , Osteoartrite/metabolismo , Dor/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...