Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 21(1): 291, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221071

RESUMO

BACKGROUND: Malaria still kills young children in rural endemic areas because early treatment is not available. Thus, the World Health Organization recommends the administration of artesunate suppositories as pre-referral treatment before transportation to the hospital in case of severe symptoms with an unavailable parenteral and oral treatment. However, negative cultural perception of the rectal route, and limited access to artesunate suppositories, could limit the use of artesunate suppositories. There is, therefore, a need for an alternative route for malaria pre-referral treatment. The aim of this study was to assess the potential of intranasal route for malaria pre-referral treatment. METHODS: The permeability of artesunate through human nasal mucosa was tested in vitro. The Transepithelial Electrical Resistance (TEER) of the nasal mucosa was followed during the permeation tests. Beside, regional deposition of artesunate powder was assessed with an unidose drug delivery device in each nostril of a nasal cast. Artesunate quantification was performed using Liquid Chromatography coupled to tandem Mass Spectrometry. RESULTS: The experimental model of human nasal mucosa was successfully implemented. Using this model, artesunate powder showed a much better passage rate through human nasal mucosa than solution (26.8 ± 6.6% versus 2.1 ± 0.3%). More than half (62.3%) of the artesunate dose sprayed in the nostrils of the nasal cast was recovered in the olfactory areas (44.7 ± 8.6%) and turbinates (17.6 ± 3.3%) allowing nose-to-brain and systemic drug diffusion, respectively. CONCLUSION: Artesunate powder showed a good permeation efficiency on human nasal mucosa. Moreover it can be efficiently sprayed in the nostrils using unidose device to reach the olfactory area leading to a fast nose-to-brain delivery as well as a systemic effect. Taken together, those results are part of the proof-of-concept for the use of intranasal artesunate as a malaria pre-referral treatment.


Assuntos
Antimaláricos , Artemisininas , Malária Cerebral , Administração Intranasal , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Criança , Pré-Escolar , Humanos , Malária Cerebral/tratamento farmacológico , Pós/uso terapêutico , Encaminhamento e Consulta , Supositórios
2.
AAPS J ; 23(4): 73, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008082

RESUMO

Demonstrating bioequivalence (BE) of nasal suspension sprays is a challenging task. Analytical tools are required to determine the particle size of the active pharmaceutical ingredient (API) and the structure of a relatively complex formulation. This study investigated the utility of the morphologically-directed Raman spectroscopy (MDRS) method to investigate the particle size distribution (PSD) of nasal suspensions. Dissolution was also investigated as an orthogonal technique. Nasal suspension formulations containing different PSD of mometasone furoate monohydrate (MFM) were manufactured. The PSD of the MFM batches was characterized before formulation manufacture using laser diffraction and automated imaging. Upon formulation manufacture, the droplet size, single actuation content, spray pattern, plume geometry, the API dissolution rate, and the API PSD by MDRS were determined. A systematic approach was utilized to develop a robust method for the analysis of the PSD of MFM in Nasonex® and four test formulations containing the MFM API with different particle size specifications. Although the PSD between distinct techniques cannot be directly compared due to inherent differences between these methodologies, the same trend is observed for three out of the four batches. Dissolution analysis confirmed the trend observed by MDRS in terms of PSD. For suspension-based nasal products, MDRS allows the measurement of API PSD which is critical for BE assessment. This approach has been approved for use in lieu of a comparative clinical endpoint BE study [1]. The correlation observed between PSD and dissolution rate extends the use of dissolution as a critical analytical tool demonstrating BE between test and reference products.


Assuntos
Furoato de Mometasona/farmacocinética , Administração Intranasal , Furoato de Mometasona/administração & dosagem , Furoato de Mometasona/química , Tamanho da Partícula , Análise Espectral Raman , Suspensões , Equivalência Terapêutica
3.
AAPS J ; 22(2): 47, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32060670

RESUMO

The aim of the study was to develop a robust and standardized in vitro dissolution methodology for orally inhaled drug products (OIDPs). An aerosol dose collection (ADC) system was designed to uniformly deposit the whole impactor stage mass (ISM) over a large filter area for dissolution testing. All dissolution tests were performed under sink conditions in a sodium phosphate buffered saline solution containing 0.2%w/w sodium dodecyl sulphate. An adapted USP Apparatus V, Paddle over Disk (POD), was used throughout the study. The dissolution characteristics of the ISM dose of a commercial metered-dose inhaler (MDI) and a range of dry powder inhaler (DPI) formulations containing inhaled corticosteroids were tested. The uniform distribution of the validated ISM dose considerably reduced drug loading effects on the dissolution profiles for both MDI and DPI formulations. The improvement in the robustness and discriminatory capability of the technique enabled characterization of dissolution rate differences between inhaler platforms and between different DPI product strengths containing fluticasone propionate. A good correlation between in vivo mean absorption time and in vitro dissolution half-life was found for a range of the inhaled corticosteroids. The ADC system and the reproducible in vitro POD dissolution measurements provided a quantitative-based approach for measuring the relationship between the influence of device and the dispersion characteristics on the aerosol dissolution of low solubility compounds. The in vitro dissolution method could potentially be applied as a dissolution methodology for compendial, quality control release testing, and during development of both branded orally inhaled drug products and their generic counterparts.


Assuntos
Corticosteroides/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Administração por Inalação , Corticosteroides/química , Agonistas de Receptores Adrenérgicos beta 2/química , Aerossóis , Combinação de Medicamentos , Composição de Medicamentos , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Cinética , Inaladores Dosimetrados , Solubilidade , Equivalência Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...