Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
AIMS Microbiol ; 9(3): 570-590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649799

RESUMO

Shiga toxin-producing E. coli (STEC) are diarrheagenic strains that can cause bloody diarrhea and hemolytic-uremic syndrome. Their main virulence factor, the Shiga toxin (Stx), is encoded by phages integrated into the bacterial chromosome. Stx phages are widely diverse and carry many genes with limited or unknown function. As the toxin subtype Stx2a is associated with highly pathogenic strains, this study was mainly focused on the characterization of the stx flanking region of Stx2a phages. Of particular interest was a sialate O-acetylesterase (NanS-p), which has been described previously to be encoded downstream stx in some phage genomes and may confer a growth advantage for STEC. Complete DNA sequences of Stx2a phages and prophages were retrieved from the GenBank database, and the genomic regions from anti-terminator Q to holin S genes were bioinformatically analyzed. Predicted NanSp sequences from phages encoding other Stx subtypes were also studied. Additionally, expression of nanS-p was quantified by qPCR in strains selected from our laboratory collection. The analysis of Stx2a phage genomes showed that all carried the Q, stx2a, nanS-p and S genes, but with allele diversity and other sequence differences. In particular, sequence differences were detected in each of the three domains of NanS-p esterases encoded by Stx2a phages and other Stx phages; however, nanS-p was not identified in the Stx2e, Stx2f and Stx2g phages analyzed. The expression of nanS-p increased in most stx2a-positive strains under phage inducing conditions, as was previously shown for stx2a. As the present work showed diversity at the Q-S region among Stx phages, and particularly in the encoded NanS-p enzyme, future studies will be necessary to evaluate if NanS-p variants differ in their activity and to assess the impact of the absence of nanS-p in certain Stx phages.

2.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 54(3): 215-224, 2017. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-879383

RESUMO

Bovine leukemia virus (BLV) is associated with the most common neoplastic disease of cattle. BLV has a silent dissemination in the herd due to infected cell exchange, thus the concentration of BLV-infected cells in blood should play a major role in the success of viral transmission. Genes from Bovine leukocyte antigen (BoLA), the MHC system of cattle, are associated with genetic resistance and susceptibility to a wide range of diseases, and also with production traits. Some BoLA DRB3.2 allele polymorphisms in Holstein cattle have been associated with resistance or susceptibility to BLV-disease development, or with proviral load (PVL). This investigation studied 107 BLV-infected Argentinean Holstein dairy cows, all of them belonging to one herd. PVL was analysed by qPCR and animals were classified as high proviral load (HPVL, N = 88) and low proviral load (LPVL, N = 19), and BoLA DRB3.2 alleles were genotyped. Alleles BoLA DRB3.2*1501 and *1201 were significantly associated with HPVL (p = 0.0230 and p = 0.0111 respectively), while allele BoLA DRB3.2*0201 was significantly associated with LPVL (p = 0.0030). The present study aims at contributing to the knowledge of the association between BoLA polymorphism and development of a BLV infection profile. Genes that best explain the PVL in this population resulted BoLA DRB3.2*0201 (as a protection factor) and *1501 (as a risk factor). Allelic differences may play an important role in the development of effective immune responses. A better understanding of how BoLA polymorphism contributes to these responses and the establishment of a BLV status is desirable to schedule and evaluate control measures.(AU)


O vírus da leucemia bovina (BLV) está associado à doença neoplásica mais comum do gado bovino. O BLV tem uma disseminação silenciosa no rebanho devido à troca de células infectadas, assim, a concentração de células BLV infectadas no sangue deve desempenhar um papel importante no sucesso da transmissão viral. Os genes do antígeno leucocitário bovino (BoLA), sistema MHC do gado bovino, estão associados à resistência genética e à susceptibilidade a uma ampla gama de doenças, bem como às características da produção. Alguns polimorfismos de alelos de BoLA DRB3.2 em bovinos Holstein têm sido associados à resistência ou susceptibilidade ao desenvolvimento da doença BLV, ou com carga proviral (PVL). Esta investigação avaliou 107 vacas leiteiras da raça Holstein argentina infectadas com BLV e pertencentes a um único rebanho. A PVL foi analisada por qPCR, os animais foram classificados em alta carga proviral (HPVL, N = 88) e baixa carga proviral (LPVL, N = 19), e os alelos BoLA DRB3.2 foram genotipados. Os alelos BoLA DRB3.2*1501 e *1201 estavam significativamente relacionados à HPVL (p = 0,0230 e p = 0,0111, respectivamente), enquanto o alelo BoLA DRB3.2*0201, à LPVL (p = 0,0030). O objetivo deste estudo é contribuir para o conhecimento da associação entre o polimorfismo de BoLA e o desenvolvimento de infecção por BLV. Os genes que melhor explicam a PVL na população analisada resultaram em BoLA DRB3.2*0201 (como fator de proteção) e *1501 (como fator de risco). As diferenças alélicas podem desempenhar um papel importante no desenvolvimento de respostas imunitárias eficazes. Uma melhor compreensão de como o polimorfismo BoLA contribui para estas respostas e o estabelecimento de um estado BLV é desejável para agendar e avaliar as medidas de controle.(AU)


Assuntos
Animais , Bovinos , Antígenos , Vírus da Leucemia Bovina/genética , Polimorfismo Genético , Carga Viral/veterinária
3.
Res Vet Sci ; 107: 190-195, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27473994

RESUMO

Bovine leukemia virus (BLV) infection is widespread mainly in dairy cattle and 5-10% of infected animals will die due to lymphosarcoma; most cattle remain asymptomatic but 30% develop persistent lymphocytosis (PL). BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms which govern the control of viral dissemination will be desirable for the design of effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. We aimed to characterize cytokines and toll-like receptors (TLR) expression related to the proviral load profiles. IFN-γ and IL-12 mRNA expression level was significantly higher in PBMC from infected cattle (LPL n=6 and HPL n=7) compared to uninfected animals (n=5). While no significant differences were observed in IL-12 expression between LPL and HPL group, IFN-γ expression was significantly higher in LPL animals. Infected cattle exhibited higher expression levels of TLR3, 7-9. Animals with HPL had significantly higher expression of TLR7/8 than uninfected cattle. TLR8 and TLR9 were up-regulated in HPL group, and TLR3 was up-regulated in LPL group. This is the first report related to TLR gene expression in BLV infected cattle and represents evidence of the involvement of these receptors in BLV recognition. Further studies on different subpopulations of immune cells may help clarify their role in response to BLV and its consequences on viral dissemination.


Assuntos
Leucose Enzoótica Bovina/virologia , Interferon gama/metabolismo , Interleucina-12/metabolismo , Vírus da Leucemia Bovina/fisiologia , Provírus , Receptores Toll-Like/metabolismo , Animais , Bovinos , Citocinas/genética , Leucose Enzoótica Bovina/metabolismo , Regulação da Expressão Gênica/fisiologia , Interferon gama/genética , Interleucina-12/genética , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Toll-Like/genética , Carga Viral , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA