Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401867

RESUMO

Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Estudos Prospectivos , Íons , Ânions , Gases , Corantes
2.
ACS Appl Mater Interfaces ; 14(42): 47775-47787, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240000

RESUMO

Nanoscale pyrazolate-based coordination polymers (CPs) are becoming increasingly popular as electrocatalysts owing to their customizable compositions and structures. However, using them for oxygen evolution reaction (OER) is highly challenging due to their unsatisfactory catalytic efficiency and relatively low stability. Herein, a simple one-step solvothermal process was employed for the fabrication of polycrystalline nickel-pyrazolate [Ni(Pz)] with an unusual lamellar nanorod-assembled microsphere morphology for the first time using ethanol as a green organic solvent via controlling other physical parameters. Meanwhile, the Ni(Pz) structure and morphology are investigated to derive its formation process following the different monomeric feed ratios relying on the metal/ligand interactions of CP. Shaping the Ni(Pz) electrocatalyst in well-oriented lamellar nanorod-assembled microspheres brings the advantage of porosity and high specific surface area, which expedites mass/charge transport and contact with the electrolyte as well as creates less tortuous pathways for charge distribution, thus improving the charge homogeneity. These high-class structural features and polycrystalline nature of Ni(Pz)-E-PVP facilitate amazing catalytic OER activity with a low overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of only 94 mV dec-1 beyond the yardstick material (i.e., RuO2) in alkaline solution. A suite of measurements, entailing X-ray photoelectron spectroscopy and density functional theory calculations, suggest that the rich Ni-N4 moieties in Ni(Pz)-E-PVP are central species providing adsorption sites for OER intermediates. This facile protocol is prophesied to commence the imminent development of noble metal-free, effective, and low-priced electrocatalysts for OER.

3.
Arch Physiol Biochem ; 126(2): 129-138, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30270668

RESUMO

Insulin resistance is caused by various environmental and genetic factors leading to a number of serious health issues. Due to its multifactorial origin, molecular characterization may provide better tools for its effective treatment. On molecular level, dysregulation of signaling pathway by insulin receptor substrates (IRSs) is one of the most common reasons of this disease. IRSs are regulated by >50 serine/threonine kinases, which may have positive or negative effects on insulin sensitivity. Among these serine/threonine kinases, PIM kinases have garnered much attention as they not only affect insulin sensitivity by phosphorylating IRSs directly and/or indirectly but also alter the activities of their downstream molecules like PI3K, AKT, and mTOR. In this review, interactions of PIM kinases with IRSs and their downstream proteins and their action mechanism in the regulation of insulin resistance are elaborated. Furthermore, this review offers fundamental understandings of the role of PIM kinases in this signaling pathway.


Assuntos
Antígenos CD/genética , Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina , Proteínas Proto-Oncogênicas c-pim-1/genética , Receptor de Insulina/genética , Animais , Antígenos CD/metabolismo , Regulação da Expressão Gênica , Humanos , Insulina/genética , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Biomolecules ; 8(1)2018 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-29401696

RESUMO

Ovarian cancer is a medical term that includes a number of tumors with different molecular biology, phenotypes, tumor progression, etiology, and even different diagnosis. Some specific treatments are required to address this heterogeneity of ovarian cancer, thus molecular characterization may provide an important tool for this purpose. On a molecular level, proviral-integration site for Moloney-murine leukemia virus (PIM) kinases are over expressed in ovarian cancer and play a vital role in the regulation of different proteins responsible for this tumorigenesis. Likewise, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is also a central regulator of the ovarian cancer. Interestingly, recent research has linked the PIM kinases to the PI3K/AKT/mTOR pathway in several types of cancers, but their connection in ovarian cancer has not been studied yet. Once the exact relationship of PIM kinases with the PI3K/AKT/mTOR pathway is acquired in ovarian cancer, it will hopefully provide effective treatments on a molecular level. This review mainly focuses on the role of PIM kinases in ovarian cancer and their interactions with proteins involved in its progression. In addition, this review suggests a connection between the PIM kinases and the PI3K/AKT/mTOR pathway and their parallel mechanism in the regulation of ovarian cancer.


Assuntos
Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Animais , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...