Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Syst Appl ; 216: 119483, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36624785

RESUMO

Monkeypox has become a significant global challenge as the number of cases increases daily. Those infected with the disease often display various skin symptoms and can spread the infection through contamination. Recently, Machine Learning (ML) has shown potential in image-based diagnoses, such as detecting cancer, identifying tumor cells, and identifying coronavirus disease (COVID)-19 patients. Thus, ML could potentially be used to diagnose Monkeypox as well. In this study, we developed a Monkeypox diagnosis model using Generalization and Regularization-based Transfer Learning approaches (GRA-TLA) for binary and multiclass classification. We tested our proposed approach on ten different convolutional Neural Network (CNN) models in three separate studies. The preliminary computational results showed that our proposed approach, combined with Extreme Inception (Xception), was able to distinguish between individuals with and without Monkeypox with an accuracy ranging from 77% to 88% in Studies One and Two, while Residual Network (ResNet)-101 had the best performance for multiclass classification in Study Three, with an accuracy ranging from 84% to 99%. In addition, we found that our proposed approach was computationally efficient compared to existing TL approaches in terms of the number of parameters (NP) and Floating-Point Operations per Second (FLOPs) required. We also used Local Interpretable Model-Agnostic Explanations (LIME) to explain our model's predictions and feature extractions, providing a deeper understanding of the specific features that may indicate the onset of Monkeypox.

2.
J Adv Vet Anim Res ; 9(1): 19-32, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35445120

RESUMO

Objectives: The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. Materials and Methods: The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation (Å), molecular surface area (Å2), root-mean-square fluctuation (Å), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area (Å2) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis. Results: Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes. Conclusion: The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.

3.
J Adv Vet Anim Res ; 9(4): 663-675, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36714520

RESUMO

Objectives: This research aimed to isolate, identify, and characterize a new strain of Bacillus cereus through different molecular biology approaches so that it could be further studied for therapeutic purposes against selective enteric pathogens. Materials and Methods: Pure isolates of B. cereus were prepared from buffalo yogurt samples in REMBA medium. Initially, the morphological, physiological, and biochemical properties were studied accordingly. Following the tests, the molecular identification for the strain identification was conducted through plasmid DNA extraction, PCR, agarose gel electrophoresis, and 16S rRNA sequencing up to 1.37 kb. Afterward, the antibiotic sensitivity [Epsilometer test (E-Test)] and antifungal activity were tested considering different concentrations. Being classified from the aforementioned tests, a comprehensive antimicrobial activity test was conducted using the cell-free-supernatant (CFS) of the test strain against selective enteric pathogens in humans in vitro. Besides, the different clusters of genes were identified and characterized for understanding the presumptive bacteriocins present in the CFS of the strain in silico, where molecular string properties were calculated. Finally, the evolutionary relationship among diversified bacteriocins synthesized by different Bacillus strains was studied to predict the CFS-containing bacteriocins of the new strain. Results: Purified isolates of B. cereus were Gram-positive rods and showed significant tolerance (p < 0.0001) to different concentrations of pH, phenol, bile salt, and NaCl. 16S rRNA revealed the strain as LOCK 1002, which was strongly sensitive to all the antibiotics used and resistant to selective antifungal agents. The CFS of B. cereus LOCK 1002 was found to be a very promising antagonist to all the enteric pathogens used in the culture condition. Two gene clusters were predicted to be interconnected and responsible for different presumptive bacteriocins. Conclusion: The newly identified LOCK 1002 can be a very potent strain of B. cereus in use as an antimicrobial agent for having different bacteriocin coding gene clusters.

4.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361023

RESUMO

Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Rim/efeitos dos fármacos , Resveratrol/farmacologia , Envelhecimento/metabolismo , Animais , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Sirtuína 1/metabolismo
5.
Infect Chemother ; 52(4): 461-477, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33263242

RESUMO

Vitamin C, also known as L-ascorbic acid, is an essential vitamin with pleiotropic functions, ranging from antioxidant to anti-microbial functions. Evidence suggests that vitamin C acts against inflammation, oxidative stress, autophagy chaos, and immune dysfunction. The ability to activate and enhance the immune system makes this versatile vitamin a prospective therapeutic agent amid the current situation of coronavirus disease 2019 (COVID-19). Being highly effective against the influenza virus, causing the common cold, vitamin C may also function against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its associated complications. Severe infections need higher doses of the vitamin to compensate for the augmented inflammatory response and metabolic demand that commonly occur during COVID-19. Compelling evidence also suggests that a high dose of vitamin C (1.5 g/kg body weight) in inflammatory conditions can result in effective clinical outcomes and thus can be employed to combat COVID-19. However, further studies are crucial to delineate the mechanism underlying the action of vitamin C against COVID-19. The current review aims to reposition vitamin C as an alternative approach for alleviating COVID-19-associated complications.

6.
Immunol Lett ; 226: 38-45, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32659267

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of deadly Coronavirus disease-19 (COVID-19) pandemic, which emerged as a major threat to public health across the world. Although there is no clear gender or socioeconomic discrimination in the incidence of COVID-19, individuals who are older adults and/or with comorbidities and compromised immunity have a relatively higher risk of contracting this disease. Since no specific drug has yet been discovered, strengthening immunity along with maintaining a healthy living is the best way to survive this disease. As a healthy practice, calorie restriction in the form of intermittent fasting (IF) in several clinical settings has been reported to promote several health benefits, including priming of the immune response. This dietary restriction also activates autophagy, a cell surveillance system that boosts up immunity. With these prevailing significance in priming host defense, IF could be a potential strategy amid this outbreak to fighting off SARS-CoV-2 infection. Currently, no review so far available proposing IF as an encouraging strategy in the prevention of COVID-19. A comprehensive review has therefore been planned to highlight the beneficial role of fasting in immunity and autophagy, that underlie the possible defense against SARS-CoV-2 infection. The COVID-19 pathogenesis and its impact on host immune response have also been briefly outlined. This review aimed at revisiting the immunomodulatory potential of IF that may constitute a promising preventive approach against COVID-19.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/etiologia , Infecções por Coronavirus/metabolismo , Suscetibilidade a Doenças , Jejum , Interações Hospedeiro-Patógeno , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Autofagia , COVID-19 , Restrição Calórica , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Jejum/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Imunidade , Pandemias , SARS-CoV-2
7.
J Adv Vet Anim Res ; 7(1): 62-68, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32219111

RESUMO

OBJECTIVE: This study aims for molecular identification of naturally growing Bacillus cereus strain from a unique source, able to survive, and alleviate heavy metals from the nature. MATERIALS AND METHODS: Pure isolate from Murrah buffalo milk was prepared in B. cereus selective Polymyxin pyruvate egg-yolk mannitol-bromothymol blue agar (PEMBA) medium through a cascade of contamination free subcultures. The morphological and biochemical tests were done prior to 16S rRNA gene sequencing for strain identification and further physiological tests. The test strain was inoculated in both solid and suspension culture medium supplemented individually with Cd, Cu, Ag, and Zn to reveal the qualitative and quantitative heavy metal tolerance properties, respectively. Finally, the data collected from the in vitro assessment was statistically analyzed. RESULTS: Molecular analysis revealed that the test strain was B. cereus BF2, which was motile, catalase positive and Gram positive rod. B. cereus BF2 was found significant at 0.3% bile salt tolerance [two-way analysis of variance (ANOVA)-p value is < 0.0001] where, t-test p value is < 0.0002 between Control Group (CG) and TGR-1; p < 0.037 between TGR-1 and 2; p < 0.0014 between CG and TGR-2. Similarly, B. cereus BF2 was significant in pH tolerant up to 8.0 with p < 0.0115 (in scale p < 0.05). The heavy metal tolerance test revealed that the test metals could not stop the growth of B. cereus BF2 even after 24 h of incubation but partially suppressed the growth kinetics for letting into stationary phase. Among the four heavy metals, Cd and Zn showed partial antagonism to the growth of B. cereus BF2. The survivability was highly significant in the medium supplemented with Zn (p < 0.0001) and Ag (p < 0.018). CONCLUSION: Bacillus cereus BF2 can survive in selective heavy metals with metal resistance and biodegradation capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...