Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Gas Res ; 13(4): 208-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077120

RESUMO

The noble gas argon has demonstrated biological activity that may prove useful as a medical intervention. Pharmacokinetics, the disposition of the drug molecule in the body through time, is fundamental necessary knowledge to drug discovery, development and even post-marketing. The fundamental measurement in pharmacokinetic studies is blood concentration of the molecule (and its metabolites) of interest. While a physiologically based model of argon pharmacokinetics has appeared in the literature, no experimental data have been published. Thus, argon pharmaceutical development requires measurement of argon solubility in blood. This paper reports on the development of a technique based on mass spectrometry for measuring argon solubility in liquids, including blood, to be further employed in pharmacokinetics testing of argon. Based on a prototype, results are reported from sensitivity experiments using ambient air, water and rabbit blood. The key takeaway is that the system was sensitive to argon during all of the testing. We believe the technique and prototype of the quadrupole mass spectrometer gas analyzer will be capable of inferring argon pharmacokinetics through the analysis of blood samples.


Assuntos
Ar , Água , Animais , Coelhos , Argônio , Solubilidade , Espectrometria de Massas/métodos , Ar/análise , Água/química
2.
Nitric Oxide ; 132: 27-33, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706864

RESUMO

Nitric oxide (NO) has been shown to have antimicrobial activity in vitro and in some in vivo models, while the virucidal activity of NO remains elusive. Some studies using NO donors have suggested that NO could be a potential candidate to treat SARS-CoV infection. The Covid-19 pandemic raised the hypothesis that NO gas might have an impact on Sars-CoV-2 replication cycle and might be considered as a candidate therapy to treat COVID-19. To our knowledge, there are no in vitro preclinical studies demonstrating a virucidal effect of gaseous NO on SARS-CoV-2. This study aims to determine whether gaseous NO has an impact on the replication cycle of SARS-CoV-2 in vitro. To that end, SARS-CoV-2 infected epithelial (VeroE6) and pulmonary (A549-hACE2) cells were treated with repeated doses of gaseous NO at different concentrations known to be efficient against bacteria. Our results show that exposing SARS-CoV-2 infected-cells to NO gas even at high doses (160 ppm, 6 h) does not influence the replication cycle of the virus in vitro. We report here that NO gas has no antiviral properties in vitro on SARS-COV-2. Therefore, there is no rationale for its usage in clinical settings to treat COVID-19 patients for direct antiviral purposes, which does not exclude other potential physiological benefits of this gas.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , Óxido Nítrico/farmacologia , Células Vero , Pandemias , Replicação Viral , Antivirais/farmacologia
3.
Med Gas Res ; 13(1): 33-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35946221

RESUMO

In a previous study, in silico screening of the binding of almost all proteins in the Protein Data Bank to each of the five noble gases xenon, krypton, argon, neon, and helium was reported. This massive and rich data set requires analysis to identify the gas-protein interactions that have the best binding strengths, those where the binding of the noble gas occurs at a site that can modulate the function of the protein, and where this modulation might generate clinically relevant effects. Here, we report a preliminary analysis of this data set using a rational, heuristic score based on binding strength and location. We report a partial prioritized list of xenon protein targets and describe how these data can be analyzed, using arginase and carbonic anhydrase as examples. Our aim is to make the scientific community aware of this massive, rich data set and how it can be analyzed to accelerate future discoveries of xenon-induced biological activity and, ultimately, the development of new "atomic" drugs.


Assuntos
Proteoma , Xenônio , Criptônio/química , Criptônio/farmacologia , Neônio/farmacologia , Gases Nobres/química , Gases Nobres/metabolismo , Xenônio/química , Xenônio/farmacologia
4.
J Chem Inf Model ; 62(5): 1318-1327, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35179902

RESUMO

Argon belongs to the group of chemically inert noble gases, which display a remarkable spectrum of clinically useful biological properties. In an attempt to better understand noble gases, notably argon's mechanism of action, we mined a massive noble gas modeling database which lists all possible noble gas binding sites in the proteins from the Protein Data Bank. We developed a method of analysis to identify among all predicted noble gas binding sites the potentially relevant ones within protein families which are likely to be modulated by Ar. Our method consists in determining within structurally aligned proteins the conserved binding sites whose shape, localization, hydrophobicity, and binding energies are to be further examined. This method was applied to the analysis of two protein families where crystallographic noble gas binding sites have been experimentally determined. Our findings indicate that among the most conserved binding sites, either the most hydrophobic one and/or the site which has the best binding energy corresponds to the crystallographic noble gas binding sites with the best occupancies, therefore the best affinity for the gas. This method will allow us to predict relevant noble gas binding sites that have potential pharmacological interest and thus potential Ar targets that will be prioritized for further studies including in vitro validation.


Assuntos
Gases Nobres , Proteínas , Argônio/química , Sítios de Ligação , Bases de Dados de Proteínas , Gases Nobres/metabolismo , Proteínas/química
5.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806919

RESUMO

Argon inhalation attenuates multiorgan failure (MOF) after experimental ischemic injury. We hypothesized that this protection could involve decreased High Mobility Group Box 1 (HMGB1) systemic release. We investigated this issue in an animal model of MOF induced by aortic cross-clamping. Anesthetized rabbits were submitted to supra-coeliac aortic cross-clamping for 30 min, followed by 300 min of reperfusion. They were randomly divided into three groups (n = 7/group). The Control group inhaled nitrogen (70%) and oxygen (30%). The Argon group was exposed to a mixture of argon (70%) and oxygen (30%). The last group inhaled nitrogen/oxygen (70/30%) with an administration of the HMGB1 inhibitor glycyrrhizin (4 mg/kg i.v.) 5 min before aortic unclamping. At the end of follow-up, cardiac output was significantly higher in Argon and Glycyrrhizin vs. Control (60 ± 4 and 49 ± 4 vs. 33 ± 8 mL/kg/min, respectively). Metabolic acidosis was attenuated in Argon and Glycyrrhizin vs. Control, along with reduced amount of norepinephrine to reverse arterial hypotension. This was associated with reduced interleukin-6 and HMGB1 plasma concentration in Argon and Glycyrrhizin vs. Control. End-organ damages were also attenuated in the liver and kidney in Argon and Glycyrrhizin vs. Control, respectively. Argon inhalation reduced HMGB1 blood level after experimental aortic cross-clamping and provided similar benefits to direct HMGB1 inhibition.


Assuntos
Argônio/farmacologia , Proteína HMGB1/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/metabolismo , Animais , Biópsia , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Coelhos
6.
Med Gas Res ; 11(1): 34-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642336

RESUMO

The limitations of the currently available treatments for chronic neuropathic pain highlight the need for safer and more effective alternatives. The authors carried out a focused review using a systems biology approach to integrate the complex mechanisms of nociception and neuropathic pain, and to decipher the effects of nitrous oxide (N2O) on those pathways, beyond the known effect of N2O on N-methyl-D-aspartate receptors. This review identified a number of potential mechanisms by which N2O could impact the processes involved in peripheral and central sensitization. In the ascending pathway, the effects of N2O include activating TWIK-related K+ channel 1 potassium channels on first-order neurons, blocking voltage-dependent calcium channels to attenuate neuronal excitability, attenuating postsynaptic glutamatergic receptor activation, and possibly blocking voltage-dependent sodium channels. In the descending pathway, N2O induces the release of endogenous opioid ligands and stimulates norepinephrine release. In addition, N2O may mediate epigenetic changes by inhibiting methionine synthase, a key enzyme involved in DNA and RNA methylation. This could explain why this short-acting analgesic has shown long-lasting anti-pain sensitization effects in animal models of chronic pain. These new hypotheses support the rationale for investigating N2O, either alone or in combination with other analgesics, for the management of chronic neuropathic pain.


Assuntos
Neuralgia/tratamento farmacológico , Óxido Nitroso/uso terapêutico , Biologia de Sistemas , Animais , Doença Crônica , Humanos
7.
Lab Anim ; 55(2): 150-157, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32722999

RESUMO

Several studies based on in vivo or in vitro models have found promising results for the noble gas argon in neuroprotection against ischaemic pathologies. The development of argon as a medicinal product includes the requirement for toxicity testing through non-clinical studies. The long exposure period of animals (rats) during several days results in technical and logistic challenges related to the gas administration. In particular, a minimum of 10 air changes per hour (ACH) to maintain animal welfare results in extremely large volumes of experimental gas required if the gas is not recirculated. The difficulty with handling the many cylinders prompted the development of such a recirculation-based design. To distribute the recirculating gas to individually ventilated cages and monitor them properly was deemed more difficult than constructing a single large enclosure that will hold several open cages. To address these concerns, a computational fluid dynamics (CFD) analysis of the preliminary design was performed. A purpose-made exposure chamber was designed based on the CFD simulations. Comparisons of the simulation results to measurements of gas concentration at two cage positions while filling show that the CFD results compare well to these limited experiments. Thus, we believe that the CFD results are representative of the gas distribution throughout the enclosure. The CFD shows that the design provides better gas distribution (i.e. a higher effective air change rate) than predicted by 10 ACH.


Assuntos
Bem-Estar do Animal/estatística & dados numéricos , Abrigo para Animais/estatística & dados numéricos , Ciência dos Animais de Laboratório/instrumentação , Ventilação , Animais , Hidrodinâmica , Camundongos , Ratos
8.
J Neural Transm (Vienna) ; 127(1): 27-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31807953

RESUMO

Using midbrain cultures, we previously demonstrated that the noble gas xenon is robustly protective for dopamine (DA) neurons exposed to L-trans-pyrrolidine-2,4-dicarboxylate (PDC), an inhibitor of glutamate uptake used to generate sustained, low-level excitotoxic insults. DA cell rescue was observed in conditions where the control atmosphere for cell culture was substituted with a gas mix, comprising the same amount of oxygen (20%) and carbon dioxide (5%) but 75% of xenon instead of nitrogen. In the present study, we first aimed to determine whether DA cell rescue against PDC remains detectable when concentrations of xenon are progressively reduced in the cell culture atmosphere. Besides, we also sought to compare the effect of xenon to that of other noble gases, including helium, neon and krypton. Our results show that the protective effect of xenon for DA neurons was concentration-dependent with an IC50 estimated at about 44%. We also established that none of the other noble gases tested in this study protected DA neurons from PDC-mediated insults. Xenon's effectiveness was most probably due to its unique capacity to block NMDA glutamate receptors. Besides, mathematical modeling of gas diffusion in the culture medium revealed that the concentration reached by xenon at the cell layer level is the highest of all noble gases when neurodegeneration is underway. Altogether, our data suggest that xenon may be of potential therapeutic value in Parkinson disease, a chronic neurodegenerative condition where DA neurons appear vulnerable to slow excitotoxicity.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hélio/farmacologia , Criptônio/farmacologia , Neônio/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Xenônio/farmacologia , Animais , Ácidos Carboxílicos/farmacologia , Células Cultivadas , Embrião de Mamíferos , Feminino , Memantina/farmacologia , Mesencéfalo , Fármacos Neuroprotetores/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Wistar , Xenônio/administração & dosagem
9.
Med Gas Res ; 9(4): 213-220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31898606

RESUMO

When administered in relatively high concentrations the mechanical properties of inhaled gas can become significantly different from air. This fact has implications in mechanical ventilation where adequate respiration and injury to the lungs or respiratory muscles can worsen morbidity and mortality. Here we use an engineering pressure loss model to analyze the administration of medical gas mixtures in newborns. The model is used to determine the pressure distribution along the gas flow path. Numerical experiments comparing medical gas mixtures with helium, nitrous oxide, argon, xenon, and medical air as a control, with and without an endotracheal tube obstruction were performed. The engineering pressure loss model was incorporated into a model of mechanical ventilation during pressure control mode, a ventilator mode that is often used for neonates. Results are presented in the form of Rohrer equations relating pressure loss to flow rate for each gas mixture with and without obstruction. These equations were incorporated into a model for mechanical ventilation resulting in pressure, flow rate, and volume curves for the inhalation-exhalation cycle. In terms of accuracy, published values of airway resistance range from 50 to 150 cmH2O/L per second for a normal 3 kg infant. With air, the current results are 55 to 80 cmH2O/L per second for 0.3 to 5 L/min. It is shown that density through inertial pressure losses has a greater influence on airway resistance than viscosity in spite of relatively low flow rates and small airway dimensions of newborns. The results indicate that the high-density xenon mixture can be problematic during mechanical ventilation. On the other hand, low density heliox (a mixture of helium and oxygen) provides a wider margin of safety for mechanical ventilation than the other gas mixtures. The argon or nitrous oxide mixtures considered are only slightly different from air in terms of mechanical ventilation performance.


Assuntos
Gases/química , Modelos Biológicos , Respiração Artificial/métodos , Ar , Argônio/química , Óxido Nitroso/química , Pico do Fluxo Expiratório , Respiração com Pressão Positiva
10.
ChemMedChem ; 13(18): 1931-1938, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30003691

RESUMO

The chemically inert noble gases display a surprisingly rich spectrum of useful biological properties. Relatively little is known about the molecular mechanisms behind these effects. It is clearly not feasible to conduct large numbers of pharmacological experiments on noble gases to identify activity. Computational studies of the binding of noble gases and proteins can address this paucity of information and provide insight into mechanisms of action. We used bespoke computational grid calculations to predict the positions of energy minima in the interactions of noble gases with diverse proteins. The method was validated by quantifying how well simulations could predict binding positions in 131 diverse protein X-ray structures containing 399 Xe and Kr atoms. We found excellent agreement between calculated and experimental binding positions of noble gases. 94 % of all crystallographic xenon atoms were within 1 Xe van der Waals (vdW) diameter of a predicted binding site, and 97 % lay within 2 vdW diameters. 100 % of crystallographic krypton atoms were within 1 Kr vdW diameter of a predicted binding site. We showed the feasibility of large-scale computational screening of all ≈60 000 unique structures in the Protein Data Bank. This will elucidate biochemical mechanisms by which these novel 'atomic drugs' elicit their valuable biochemical properties and identify new medical uses.


Assuntos
Criptônio/química , Proteínas/química , Xenônio/química , Sítios de Ligação , Modelos Moleculares , Relação Estrutura-Atividade
11.
Mov Disord ; 33(10): 1632-1642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29756234

RESUMO

Parkinson's disease motor symptoms are treated with levodopa, but long-term treatment leads to disabling dyskinesia. Altered synaptic transmission and maladaptive plasticity of corticostriatal glutamatergic projections play a critical role in the pathophysiology of dyskinesia. Because the noble gas xenon inhibits excitatory glutamatergic signaling, primarily through allosteric antagonism of the N-methyl-d-aspartate receptors, we aimed to test its putative antidyskinetic capabilities. We first studied the direct effect of xenon gas exposure on corticostriatal plasticity in a murine model of levodopa-induced dyskinesia We then studied the impact of xenon inhalation on behavioral dyskinetic manifestations in the gold-standard rat and primate models of PD and levodopa-induced dyskinesia. Last, we studied the effect of xenon inhalation on axial gait and posture deficits in a primate model of PD with levodopa-induced dyskinesia. This study shows that xenon gas exposure (1) normalized synaptic transmission and reversed maladaptive plasticity of corticostriatal glutamatergic projections associated with levodopa-induced dyskinesia, (2) ameliorated dyskinesia in rat and nonhuman primate models of PD and dyskinesia, and (3) improved gait performance in a nonhuman primate model of PD. These results pave the way for clinical testing of this unconventional but safe approach. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , Xenônio/uso terapêutico , Administração por Inalação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Ratos , Transtornos de Sensação/tratamento farmacológico , Transtornos de Sensação/etiologia , Simpatolíticos/toxicidade , Fatores de Tempo
12.
Med Gas Res ; 7(1): 28-36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480029

RESUMO

Argon (Ar) is a noble gas with known organoprotective effects in rodents and in vitro models. In a previous study we failed to find a postconditioning effect of Ar during ex vivo lung perfusion (EVLP) on warm-ischemic injury in a porcine model. In this study, we further investigated a prolonged exposure to Ar to decrease cold ischemia-reperfusion injury after lung transplantation in a porcine model with EVLP assessment. Domestic pigs (n = 6/group) were pre-conditioned for 6 hours with 21% O2 and 79% N2 (CONTR) or 79% Ar (ARG). Subsequently, lungs were cold flushed and stored inflated on ice for 18 hours inflated with the same gas mixtures. Next, lungs were perfused for 4 hours on EVLP (acellular) while ventilated with 12% O2 and 88% N2 (CONTR group) or 88% Ar (ARG group). The perfusate was saturated with the same gas mixture but with the addition of CO2 to an end-tidal CO2 of 35-45 mmHg. The saturated perfusate was drained and lungs were perfused with whole blood for an additional 2 hours on EVLP. Evaluation at the end of EVLP did not show significant effects on physiologic parameters by prolonged exposure to Ar. Also wet-to-dry weight ratio did not improve in the ARG group. Although in other organ systems protective effects of Ar have been shown, we did not detect beneficial effects of a high concentration of Ar on cold pulmonary ischemia-reperfusion injury in a porcine lung model after prolonged exposure to Ar in this porcine model with EVLP assessment.

13.
J Neurochem ; 142(1): 14-28, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28398653

RESUMO

Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder.


Assuntos
Anestésicos Inalatórios/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Xenônio/farmacologia , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cromanos/farmacologia , Ácidos Dicarboxílicos/antagonistas & inibidores , Ácidos Dicarboxílicos/toxicidade , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Técnicas de Cultura de Órgãos , Pirrolidinas/antagonistas & inibidores , Pirrolidinas/toxicidade , Ratos , Ratos Wistar
14.
Med Gas Res ; 7(4): 256-259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29497486

RESUMO

Under normal conditions we continuously breathe 78% nitrogen (N2) such that the body tissues and fluids are saturated with dissolved N2. For normobaric medical gas administration at high concentrations, the N2 concentration must be less than that in the ambient atmosphere; therefore, nitrogen will begin to be released by the body tissues. There is a need to estimate the time needed for denitrogenation in the planning of surgical procedures. In this paper we will describe the application of a physiologically based pharmacokinetic model to denitrogenation kinetics. The results are compared to the data resulting from experiments in the literature that measured the end tidal N2 concentration while breathing 100% oxygen in the form of moderately rapid and slow compartment time constants. It is shown that the model is in general agreement with published experimental data. Correlations for denitrogenation as a function of subject weight are provided.

15.
Med Gas Res ; 6(1): 14-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27826419

RESUMO

New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

16.
Pharmacol Ther ; 160: 44-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896563

RESUMO

The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms.


Assuntos
Gases Nobres/uso terapêutico , Animais , Humanos , Xenônio/uso terapêutico
17.
Bioorg Med Chem Lett ; 23(16): 4685-91, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845218

RESUMO

Racemic cis-1,1-dioxo-5,6-dihydro-[4,1,2]oxathiazine derivative 4a was isolated as an impurity in a sample of a hit from a HTS campaign on 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). After separation by chiral chromatography the 4a-S, 8a-R enantiomer of compound 4a was identified as the true, potent enzyme inhibitor. The cocrystal structure of 4a with human and murine 11ß-HSD1 revealed the unique binding mode of the oxathiazine series. SAR elucidation and optimization in regard to metabolic stability led to monocyclic tetramethyloxathiazines as exemplified by compound 21g.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos/síntese química , Modelos Moleculares , Tiazinas/síntese química , Animais , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/farmacologia
18.
Bioorg Med Chem Lett ; 23(8): 2414-21, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23478147

RESUMO

Starting from 11ß-HSD1 inhibitors that were active ex vivo but with Cyp 3A4 liability, we obtained a new series of adamantane ureas displaying potent inhibition of both human and rodent 11ß-HSD1 enzymes, devoid of Cyp 3A4 interactions, and rationally designed to provide long-lasting inhibition in target tissues. Final optimizations lead to SAR184841 with good oral pharmacokinetic properties showing in vivo activity and improvement of metabolic parameters in a physiopathological model of type 2 diabetes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Adamantano/química , Adamantano/farmacocinética , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Relação Estrutura-Atividade
20.
J Biol Chem ; 278(39): 37790-8, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12857728

RESUMO

The Epstein-Barr virus (EBV) protein EB2 (also called Mta, SM, or BMLF1) has properties in common with mRNA export factors and is essential for the production of EBV infectious virions. However, to date no RNA-binding motif essential for EB2-mediated mRNA export has been located in the protein. We show here by Northwestern blot analysis that the EB2 protein purified from mammalian cells binds directly to RNA. Furthermore, using overlapping glutathione S-transferase (GST)-EB2 peptides, we have, by RNA electrophoretic mobility shift assays (REMSAs) and Northwestern blotting, located an RNA-binding motif in a 33-amino acid segment of EB2 that has structural features of the arginine-rich RNA-binding motifs (ARMs) also found in many RNA-binding proteins. A synthetic peptide (called Da), which contains this EB2 ARM, bound RNA in REMSA. A GST-Da fusion protein also bound RNA in REMSA without apparent RNA sequence specificity, because approximately 10 GST-Da molecules bound at multiple sites on a 180-nucleotide RNA fragment. Importantly, a short deletion in the ARM region impaired both EB2 binding to RNA in vivo and in vitro and EB2-mediated mRNA export without affecting the shuttling of EB2 between the nucleus and the cytoplasm. Moreover, ectopic expression of ARM-deleted EB2 did not rescue the production of infectious virions by 293 cells carrying an EBVDeltaEB2 genome, which suggests that the binding of EB2 to RNA plays an essential role in the EBV productive cycle.


Assuntos
Herpesvirus Humano 4/fisiologia , Fosfoproteínas/química , Fosfoproteínas/fisiologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transativadores/química , Transativadores/fisiologia , Proteínas Virais , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina , Sítios de Ligação , Herpesvirus Humano 4/genética , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...