Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1146690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143648

RESUMO

Background: Neuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes. Methods: Male C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry. Results: Changes suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance. Conclusions: Systemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.


Assuntos
Disfunção Cognitiva , Listeria monocytogenes , Listeriose , Camundongos , Masculino , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/etiologia
2.
J Lipid Res ; 61(10): 1308-1319, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32669383

RESUMO

Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Cognição , Interleucina-6/metabolismo , Pregnanolona/biossíntese , Envelhecimento/metabolismo , Animais , Encéfalo/fisiologia , Masculino , Camundongos
3.
Mol Metab ; 9: 141-155, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29398615

RESUMO

OBJECTIVE: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. METHODS: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. RESULTS: Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30-50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aß uptake, both critical functions of astrocytes in the brain. CONCLUSIONS: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimer's disease and other age-associated cognitive pathologies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Memória de Curto Prazo , Mitocôndrias/metabolismo , Receptor IGF Tipo 1/genética , Envelhecimento/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
4.
Geroscience ; 39(2): 129-145, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28409331

RESUMO

Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igf f/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.


Assuntos
Pleiotropia Genética , Nível de Saúde , Fator de Crescimento Insulin-Like I/fisiologia , Longevidade , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Bone Miner Res ; 31(2): 443-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26260312

RESUMO

Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (µCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be reduced by modifying circulating IGF-1 levels early in life.


Assuntos
Envelhecimento/metabolismo , Densidade Óssea , Fator de Crescimento Insulin-Like I/metabolismo , Caracteres Sexuais , Transdução de Sinais , Coluna Vertebral/metabolismo , Envelhecimento/genética , Animais , Feminino , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Transgênicos , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/biossíntese , Ligante RANK/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Tempo
6.
J Gerontol A Biol Sci Med Sci ; 69(11): 1353-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25098324

RESUMO

Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Isquemia Encefálica/etiologia , Endotelina-1/fisiologia , Hormônio do Crescimento/deficiência , Fator de Crescimento Insulin-Like I/deficiência , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Infarto Cerebral/fisiopatologia , Modelos Animais de Doenças , Nanismo/genética , Nanismo/patologia , Nanismo/fisiopatologia , Feminino , Hormônio do Crescimento/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Masculino , Ratos , Ratos Endogâmicos Lew , Ratos Mutantes
7.
Am J Physiol Heart Circ Physiol ; 307(6): H858-68, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038144

RESUMO

Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.


Assuntos
Lesões Encefálicas/etiologia , Células Endoteliais/efeitos da radiação , Hipocampo/irrigação sanguínea , Hipocampo/efeitos da radiação , Microvasos/efeitos da radiação , Neovascularização Fisiológica/efeitos da radiação , Lesões por Radiação/etiologia , Células-Tronco/efeitos dos fármacos , Irradiação Corporal Total , Animais , Transplante de Medula Óssea , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Adesão Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Modelos Animais de Doenças , Fracionamento da Dose de Radiação , Células Endoteliais/patologia , Células Endoteliais/transplante , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/patologia , Microvasos/fisiopatologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões por Radiação/fisiopatologia , Nicho de Células-Tronco , Células-Tronco/patologia , Fatores de Tempo
8.
J Mol Neurosci ; 48(1): 111-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22562814

RESUMO

The hippocampus undergoes changes with aging that impact neuronal function, such as synapse loss and altered neurotransmitter release. Nearly half of the aged population also develops deficits in spatial learning and memory. To identify age-related hippocampal changes that may contribute to cognitive decline, transcriptomic analysis of synaptosome preparations from adult (12 months) and aged (28 months) Fischer 344-Brown Norway rats assessed for spatial learning and memory was performed. Bioinformatic analysis identified the MHCI pathway as significantly upregulated with aging. Age-related increases in mRNAs encoding the MHCI genes RT1-A1, RT1-A2, and RT1-A3 were confirmed by qPCR in synaptosomes and in CA1 and CA3 dissections. Elevated levels of the MHCI cofactor (B2m), antigen-loading components (Tap1, Tap2, Tapbp), and two known MHCI receptors (PirB, Klra2) were also confirmed. Protein expression of MHCI was elevated with aging in synaptosomes, CA1, and DG, while PirB protein expression was induced in both CA1 and DG. MHCI expression was localized to microglia and neuronal excitatory postsynaptic densities, and PirB was localized to neuronal somata, axons, and dendrites. Induction of the MHCI antigen processing and presentation pathway in hippocampal neurons and glia may contribute to age-related hippocampal dysfunction by increasing neuroimmune signaling or altering synaptic homeostasis.


Assuntos
Envelhecimento/metabolismo , Região CA1 Hipocampal/metabolismo , Giro Denteado/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Receptores Imunológicos/metabolismo , Fatores Etários , Envelhecimento/patologia , Animais , Região CA1 Hipocampal/patologia , Quimera , Giro Denteado/patologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade Classe I/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Sinaptossomos/metabolismo , Transcriptoma/fisiologia , Regulação para Cima/fisiologia
9.
J Gerontol A Biol Sci Med Sci ; 67(6): 553-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22080499

RESUMO

Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.


Assuntos
Aorta/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hormônio do Crescimento/deficiência , Fator de Crescimento Insulin-Like I/deficiência , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Citocinas/sangue , Nanismo/sangue , Nanismo/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Molécula 1 de Adesão Intercelular/biossíntese , Masculino , Obesidade/sangue , Estresse Oxidativo , Ratos , Ratos Endogâmicos Lew , Fator de Necrose Tumoral alfa/biossíntese
10.
J Neuroinflammation ; 8: 138, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21989322

RESUMO

BACKGROUND: Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. METHODS: Three independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1. RESULTS: We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. CONCLUSIONS: These data demonstrate a novel, coordinated age-related induction of the MHC II immune response pathway and glial activation in the hippocampus, indicating an allostatic shift toward a para-inflammatory phenotype with advancing age. Our findings demonstrate that age-related induction of these aspects of hippocampal neuroinflammation, while a potential contributing factor, is not sufficient by itself to elicit impairment of spatial learning and memory in models of normative aging. Future efforts are needed to understand how neuroinflammation may act synergistically with cognitive-decline specific alterations to cause cognitive impairment.


Assuntos
Envelhecimento , Transtornos Cognitivos/imunologia , Hipocampo/citologia , Hipocampo/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Complexo Principal de Histocompatibilidade , Neuroglia/fisiologia , Envelhecimento/imunologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Comportamento Animal/fisiologia , Biomarcadores/metabolismo , Transtornos Cognitivos/fisiopatologia , Perfilação da Expressão Gênica , Genes MHC da Classe II , Hipocampo/fisiologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Análise em Microsséries , Neuroglia/citologia , Neuroglia/imunologia , Ratos , Ratos Endogâmicos F344 , Transcriptoma
11.
J Endocrinol ; 211(1): 27-37, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21750148

RESUMO

GH and its anabolic mediator, IGF1, are important not only in somatic growth but also in the regulation of brain function. Even though GH treatment has been used clinically to improve body composition and exercise capacity in adults, its influence on central nervous system function has only recently been recognized. This is also the case for children with childhood-onset GH deficiency (GHD) where GH has been used to stimulate bone growth and enhance final adult height. Circulating IGF1 is transported across the blood-brain barrier and IGF1 and its receptors are also synthesized in the brain by neurons and glial and endothelial cells. Nevertheless, the relationship between circulating IGF1 and brain IGF1 remains unclear. This study, using a GH-deficient dwarf rat model and peripheral GH replacement, investigated the effects of circulating IGF1 during adolescence on IGF1 levels in the brain. Our results demonstrated that hippocampal IGF1 protein concentrations during adolescence are highly regulated by circulating IGF1, which were reduced by GHD and restored by systematic GH replacement. Importantly, IGF1 levels in the cerebrospinal fluid were decreased by GHD but not restored by GH replacement. Furthermore, analysis of gene expression using microarrays and RT-PCR indicated that circulating IGF1 levels did not modify the transcription of Igf1 or its receptor in the hippocampus but did regulate genes that are involved in microvascular structure and function, brain development, and synaptic plasticity, which potentially support brain structures involved in cognitive function during this important developmental period.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Nanismo/genética , Nanismo/metabolismo , Nanismo/fisiopatologia , Feminino , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/deficiência , Masculino , Modelos Animais , Ratos , Ratos Endogâmicos Lew , Ratos Mutantes
12.
Mol Vis ; 17: 1261-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21633715

RESUMO

PURPOSE: Vision loss is one of the most common complications of aging, even in individuals with no diagnosed ocular disease. Increasing age induces structural alterations and functional impairments in retinal neurons and microvasculature linked to the activation of proinflammatory signaling pathways. Commonalities between the effects of aging and those observed with diabetes, including visual impairment, vascular dysfunction, and increased inflammatory response, have led to the hypothesis that diabetes-associated pathologies reflect an "advanced aging" phenotype. The goal of this study was to investigate the effects of aging on retinal mRNA expression of neurovascular and inflammatory transcripts previously demonstrated to be regulated with diabetes. METHODS: The relative expression of 36 genes of interest previously identified as consistently regulated with diabetes was assessed in retinas of Young (3 month), Adult (12 month), and Aged (26 month) Fischer 344 x Brown Norway (F1) hybrid rats using quantitative PCR. Serum samples obtained at sacrifice were assayed to determine serum glucose levels. RESULTS: Eleven inflammation- and microvascular-related genes previously demonstrated to be upregulated in young diabetic rats (complement component 1 s subcomponent [C1s], chitinase 3-like 1 [Chi3L1], endothelin 2 [Edn2], guanylate nucleotide binding protein 2 [Gbp2], glial fibrillary acidic protein [Gfap], intracellular adhesion molecule 1 [Icam1], janus kinase 3 [Jak3], lipopolysaccharide-induced TNF factor [Litaf], complement 1-inhibitor [Serping1], signal transducer and activator of transcription 3 [Stat3], tumor necrosis factor receptor subfamily member 12a [Tnfrsf12a]) demonstrated progressively increasing retinal expression in aged normoglycemic rats. Additionally, two neuronal function-related genes (glutamate receptor ionotropic NMDA 2A [Grin2a] and polycomb group ring finger 1 [Pcgf1]) and one inflammation-related gene (pigment epithelium-derived growth factor [Pedf]) displayed patterns of expression dissimilar to that previously demonstrated with diabetes. CONCLUSIONS: The commonalities in retinal age-related and diabetes-induced molecular alterations provide support for the hypothesis that diabetes and aging engage some common para-inflammatory processes. However, these results also demonstrate that while the retinal genomic response to diabetes and aging share commonalities, they are not superimposable phenotypes. The observed changes in retinal gene expression provide further evidence of retinal alterations in neurovascular and inflammatory processes across the adult rat lifespan; this is indicative of para-inflammation that may contribute to the functional impairments that occur with advanced age. The data also suggest the potential for an additive effect of aging and diabetes in the development of diabetic complications.


Assuntos
Envelhecimento/metabolismo , RNA Mensageiro/metabolismo , Retina/metabolismo , Animais , Glicemia/metabolismo , Hibridização Genética , Inflamação/genética , Masculino , Microcirculação/genética , Neurônios/fisiologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Vasos Retinianos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Neurobiol Dis ; 43(1): 201-12, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440628

RESUMO

Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype.


Assuntos
Transtornos Cognitivos/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Animais , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/fisiopatologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Sinaptossomos/fisiologia
14.
J Neurochem ; 113(6): 1577-88, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20374424

RESUMO

Decreased cognitive performance reduces independence and quality of life for aging individuals. Healthy brain aging does not involve significant neuronal loss, but little is known about the effects of aging at synaptic terminals. Age-related cognitive decline likely reflects the manifestation of dysregulated synaptic function and ineffective neurotransmission. In this study, hippocampal synaptosomes were enriched from young-adult (3 months), adult (12 months), and aged (26 months) Fischer 344 x Brown Norway rats, and quantitative alterations in the synaptoproteome were examined by 2-DIGE and MS/MS. Bioinformatic analysis of differentially expressed proteins identified a significant effect of aging on a network of neurotransmission-regulating proteins. Specifically, altered expression of DNM1, HPCA, PSD95, SNAP25, STX1, SYN1, SYN2, SYP, and VAMP2 was confirmed by immunoblotting. 14-3-3 isoforms identified in the proteomic analysis were also confirmed as a result of their implication in the regulation of the synaptic vesicle cycle and neurotransmission modulation. The findings of this study demonstrate a coordinated down-regulation of neurotransmission-regulating proteins that suggests an age-based deterioration of hippocampal neurotransmission occurring between adulthood and advanced age. Altered synaptic protein expression may decrease stimulus-induced neurotransmission and vesicle replenishment during prolonged or intense stimulation, which are necessary for learning and the formation and perseverance of memory.


Assuntos
Envelhecimento , Regulação da Expressão Gênica/fisiologia , Hipocampo/ultraestrutura , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Sinaptossomos/metabolismo , Animais , Biologia Computacional/métodos , Eletroforese em Gel Bidimensional/métodos , Masculino , Espectrometria de Massas/métodos , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Ratos , Ratos Endogâmicos F344 , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...