Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1137840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251761

RESUMO

Introduction: There are several factors that affect the quality and quantity of active ingredients and essential oil (EO) content, including pre and postharvest practices such as drying conditions. One of the most important factors in drying is temperature and then selective drying temperature (DT). In general, DT has a direct effect on the aromatic properties of Anethum graveolens. Methods: On this basis, the present study was conducted to evaluate the effects of different DTs on the aroma profile of A. graveolens ecotypes. Results and discussion: The results showed that different DTs, ecotypes, and their interaction significantly affect EO content and composition. The highest EO yield was obtained from the Parsabad ecotype (1.86%) followed by the Ardabil ecotype (1.4%), both at 40° C. More than 60 EO compounds were identified, mainly monoterpenes and sesquiterpenes, highlighting α-Phellandrene, Germacrene D, and Dill apiole as major components in all treatments. Besides α-Phellandrene, the major EO compounds at shad drying (ShD) were ß-Phellandrene and p-Cymene, while plant parts dried at 40° C showed l-Limonene and Limonene as the main constituents, and Dill apiole was detected in greater amounts in the samples dried at 60 °C. To determine the appropriate DT, simple and factorial based-ANOVA together multivariate analysis demonstrated significant differences in the compounds produced under different DTs. The results indicated that more EO compounds, mainly monoterpenes, were extracted at ShD than other DTs. On the other hand, the content and composition of sesquiterpenes increased significantly when DT was increased to 60 °C. From the genetic backgrounds point of view, the Parsabad ecotype (with 12 similar compounds) and Esfahan ecotype (with 10 similar compounds) were the most suitable ecotypes under all DTs in terms of EO compounds. Accordingly, the present study would help various industries to optimize specific DT(s) to obtain special EO compound(s) from different A. graveolens ecotypes based on commercial requirements.

2.
Front Plant Sci ; 13: 780257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197994

RESUMO

Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...