Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biochem Biophys Rep ; 38: 101732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38859930

RESUMO

Background: Radiotherapy is one of the primary treatments for cancer, but it can cause damage to normal tissues and lead to side effects. The use of radiosensitizers can enhance the sensitivity of cancer cells to radiation, thereby reducing the amount of radiation required and minimizing damage to healthy tissues. Bismuth selenide nanoparticles (Bi2Se3 NPs) have been shown to have potential as radiosensitizers. Materials and methods: In this study, we investigated the potential of Bi2Se3 NPs as a radiosensitizer in colon cancer cells (HCT-116) in vitro. The cells were treated with various concentrations of Bi2Se3 NPs and then exposed to ionizing radiation. The viability of the cells was assessed using the MTT assay, and the survival rate was evaluated. Results: Our results showed that Bi2Se3 NPs significantly enhanced the sensitivity of colon cancer cells to ionizing radiation in a dose-dependent manner. The combination of Bi2Se3 NPs and radiation resulted in a significant decrease in cell viability and survival rate compared to radiation alone. Conclusion: Bi2Se3 NPs have the potential to be used as a radiosensitizer in the treatment of colon cancer. The findings of this study suggest that combining Bi2Se3 NPs with radiation may enhance the effectiveness of radiotherapy and reduce the mortality rate associated with colon cancer. Further studies are needed to investigate the safety and efficacy of this approach in vivo.

2.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824555

RESUMO

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Assuntos
Antibacterianos , Cimentos Dentários , Braquetes Ortodônticos , Prata , Remineralização Dentária , Antibacterianos/farmacologia , Prata/farmacologia , Remineralização Dentária/métodos , Cimentos Dentários/farmacologia , Teste de Materiais , Nanoestruturas/uso terapêutico , Streptococcus mutans/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Vidro/química , Microscopia Eletrônica de Transmissão , Cerâmica , Humanos , Resinas Compostas/farmacologia , Resinas Compostas/química , Resistência ao Cisalhamento , Dureza , Colagem Dentária/métodos , Esmalte Dentário/efeitos dos fármacos
3.
BMC Oral Health ; 24(1): 752, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943115

RESUMO

BACKGROUND: Tissue conditioners are used for treating and improving the tissues supporting complete dentures. On the other hand, recent advances in nanotechnology have revolutionized various fields of science, including dentistry. The present study aimed to investigate novel antimicrobial applications of copper oxide nanoparticle-based tissue conditioner used in complete prostheses. METHODS: The present experimental study included 126 tissue conditioner samples with different concentrations of copper oxide nanoparticles (20%, 10%, 5%, 2.5%, 1.25%, 0.625%, and 0% w/w). The samples were incubated with Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans in 24-well plates for 24 h. Then, samples from the wells were re-incubated for 24 h, and the microorganisms were counted. RESULTS: The culture media containing E. faecalis and P. aeruginosa showed significantly different growth between different nanoparticle concentrations following 24 h (P < 0.001), showing a reduction in bacterial growth with increased nanoparticle concentration. Both bacteria did not show any growth at the 20% concentration. However, C. albicans showed significant differences in growth between different nanoparticle concentrations following 48 h (P < 0.001), showing a reduction in growth with increased nanoparticle concentration. Also, the least growth was observed at the 20% concentration. CONCLUSIONS: In conclusion, the CuO nanoparticles were prepared using a green synthesis methon in the suitable sizes. Moreover, the tissue conditioners containing CuO nanoparticles showed acceptable antimicrobial properties against E. faecalis, P. aeruginosa, and C. albicans.


Assuntos
Anti-Infecciosos , Candida albicans , Cobre , Enterococcus faecalis , Pseudomonas aeruginosa , Cobre/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Prótese Total/microbiologia , Nanopartículas , Humanos , Nanopartículas Metálicas
4.
Clin Exp Dent Res ; 10(3): e887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798089

RESUMO

OBJECTIVE: This study aimed to evaluate the impact of silver nanoparticles (AgNPs) synthesized from propolis on the formation of Porphyromonas gingivalis biofilms. MATERIAL AND METHODS: AgNPs were synthesized from propolis, and their inhibitory effect on P. gingivalis biofilm formation was assessed. Different concentrations of AgNPs (0.1%, 0.3%, and 0.5%) were tested to determine the dose-dependent antibacterial activity. RESULTS: The results of this study indicated that AgNPs exhibited an inhibitory effect on P. gingivalis biofilm formation. The antibacterial activity of AgNPs was dose-dependent, with concentrations of 0.1%, 0.3%, and 0.5% showing effectiveness. Notably, the concentration of 0.5% demonstrated the most significant anti-biofilm formation activity. CONCLUSION: The results of this study suggest that AgNPs synthesized from propolis have potential as an effective option for enhancing periodontal treatment outcomes. The inhibitory effect of AgNPs on P. gingivalis biofilm formation highlights their potential as alternative antimicrobial agents in the management of periodontal diseases.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas Metálicas , Porphyromonas gingivalis , Prata , Porphyromonas gingivalis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Química Verde , Própole/farmacologia , Própole/química , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga , Humanos
5.
Anal Methods ; 16(19): 3030-3038, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682263

RESUMO

In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Colorimetria , Ouro , Nanopartículas Metálicas , Zea mays , Aflatoxina B1/análise , Aflatoxina B1/química , Ouro/química , Colorimetria/métodos , Zea mays/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Poli A/química , Limite de Detecção , Contaminação de Alimentos/análise , Compostos de Amônio Quaternário/química , Polietilenos
6.
Biotechnol Lett ; 46(2): 263-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326543

RESUMO

PURPOSE: Currently, regenerative endodontic treatments are gaining more and more attention, and stem cells play a significant role in these treatments. In order to enhance stem cell proliferation and differentiation, a variety of methods and materials have been used. The purpose of this study was to determine the effects of magnesium oxide nanoparticles and LED irradiation on the survival and differentiation of human stem cells from apical papilla. METHODS: The MTT test was used to measure the cell survival of SCAPs that had been exposed to different concentrations of magnesium oxide nanoparticles after 24 and 48 h, and the concentration with the highest cell survival rate was picked for further studies. The cells were classified into four distinct groups based on their treatment: (1) control, which received no exposure, (2) exposure to magnesium oxide nanoparticles, (3) exposure to light emitting diode (LED) irradiation (635 nm, 200 mW/cm2) for 30 s, (4) exposure simultaneously with magnesium oxide nanoparticles and LED irradiation. A green approach was employed to synthesize magnesium oxide nanoparticles. Quantitative real time PCR was used to measure the gene expression of osteo/odontogenic markers such as BSP, DSPP, ALP and DMP1 in all four groups after treatment, and Alizarin red S staining (ARS) was used to determine the osteogenic differentiation of SCAPs by demonstrating the Matrix mineralization. RESULTS: The highest viability of SCAPs was observed after 24 h in concentration 1 and 10 µg/mL and after 48 h in concentration 1 µg/mL, which were not significantly different from the control group. In both times, the survival of SCAPs decreased with increasing concentration of magnesium oxide nanoparticles (MgONPs). According to the results of Real-time PCR, after 24 and 48 h, the highest differentiation of BSP, DMP1, ALP and DSPP genes was observed in the LED + MgONPs group, followed by MgONPs and then LED, and in all 3 experimental groups, it was significantly higher than control group (P < 0.05). Also, after 24 and 48 h, the density of ARS increased in all groups compared to the control group, and the highest density was observed in the MgONPs + LED and MgONPs groups. CONCLUSION: This research concluded that exposure to SCAPs, MgONPs, and LED irradiation has a significant effect on enhancing gene expression of odontogenic/osteogenic markers and increasing matrix mineralization.


Assuntos
Óxido de Magnésio , Osteogênese , Humanos , Óxido de Magnésio/farmacologia , Óxido de Magnésio/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Células Cultivadas , Proliferação de Células
7.
BMC Chem ; 18(1): 43, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395982

RESUMO

BACKGROUND: The objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA). METHODS: In this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures. RESULTS: Based on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22-35 nm, and 34-47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2-87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05). CONCLUSION: The vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin-metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.

8.
Biol Trace Elem Res ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135818

RESUMO

Trace elements (TEs) play a crucial role in metabolism through their biochemical and catalytic effects, and alterations in their levels have been observed in various malignancies. Given that chemotherapy is a common treatment for cancer, it is important to understand how it may affect the levels of TEs in the body. By investigating changes in TEs levels before and after chemotherapy, this study aims to provide insights into the potential impact of chemotherapy on TEs levels in cancer patients. In the present study, analyses were performed on the serum level of some elements including Zn, Cu, Cd, and Se in 69 patients with leukemia, lymphoma, prostate and breast cancers before and after three courses of chemotherapy. The serum TEs were measured by atomic absorption spectroscopy. The serum Zn levels in patients with leukemia, lymphoma, and breast cancer significantly decreased after chemotherapy (P < 0.05). Significant reductions were also observed in the post-chemotherapy serum level of Cd in patients with prostate (P = 0.020) and breast cancer (P = 0.013). Moreover, the Se serum level significantly decreased after chemotherapy compared to before it in the breast cancer patients (P < 0.001). In contrast, the serum level of Cu was higher before than after chemotherapy in all the patients, but no significant difference was found (P > 0.05). The results show that chemotherapy can alter the level of TEs. The assessment of TEs in cancer patients may provide information about the side effects of chemotherapy as well as the use of appropriate strategies to better manage the clinical conditions of patients.

9.
Dent Res J (Isfahan) ; 20: 88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810452

RESUMO

Background: This study aims to investigate the color stability of feldspathic porcelains with different concentrations of silver nanoparticles (AgNPs). Materials and Methods: In this experimental study, feldspathic porcelain disks with AgNPs of 0 parts per million (ppm), 250 ppm, and 500 ppm were used (sample size = 180). These ceramic discs were subjected to thermocycling in tea, orange juice, and artificial saliva. The optical parameters of disks were measured before and after being immersed in the solutions. Then, the color change (ΔE 00) of the samples was measured by using the CIEDE 2000 formula. The data were analyzed by one-way analysis of variance (ANOVA) and Tukey's post hoc test. The level of significance was determined to be 0.05. Results: The results of the ANOVA test show that there was a significant difference in ΔE 00 (P ≤ 0.05). The maximum ΔE 00 was visible in the samples with AgNPs 0 ppm that were exposed to orange juice, and the minimum ΔE 00 was related to the disks with AgNPs 500 ppm in artificial saliva. Conclusion: Based on the results of this study, adding AgNPs to feldspathic porcelain increases the color stability of the ceramic discs.

10.
Health Sci Rep ; 6(10): e1669, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37900090

RESUMO

Background and Aims: Hypothyroidism is the most common disease of the thyroid gland. Thyroid hormone plays a crucial role in regulating tissue growth and metabolism. Additionally, patients with thyroid dysfunction have a higher incidence of caries and periodontal problems. The presence of calcium and phosphate ions seems to be effective in remineralizing teeth and reducing caries. The aim of this study was to evaluate the salivary level of calcium in patients with hypothyroidism. Results: The results of this study showed that saliva calcium concentration in patients with hypothyroidism is significantly lower than healthy subjects. Also, no significant association was found between salivary calcium levels and TSH and T4 hormones level of blood. Conclusion: The increased prevalence of dental caries in patients with hypothyroidism may be related to a decrease in their calcium levels.

11.
BMC Oral Health ; 23(1): 826, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904192

RESUMO

BACKGROUND: This study aims to synthesize and characterize hydroxyapatite nanoparticles (nano-HA) and evaluate their effects on the remineralization of demineralized enamel in the presence to Er,CR: YSGG laser irradiation. MATERIALS AND METHODS: Enamel specimens from 44 human molars were divided into four groups: control, demineralized enamel, demineralized enamel treated with nano-HA, and demineralized enamel treated with nano-HA followed by Er,Cr:YSGG laser irradiation (0.5, 20 Hz, 60 µs, 20 s). Vickers microhardness test was used to evaluate the enamel surface hardness. The morphology and chemistry of enamel surfaces were assessed using scanning electron microscopy (SEM) and Raman spectroscopy, respectively. RESULT: The result of this study showed that the application of Er,CR: YSGG laser irradiation to demineralized enamel treated with nano-HA had the highest impact on its microhardness. CONCLUSION: ER,CR: YSGG laser irradiation promotes enamel remineralization after treatment with nano HA.


Assuntos
Lasers de Estado Sólido , Nanopartículas , Humanos , Lasers de Estado Sólido/uso terapêutico , Durapatita/farmacologia , Durapatita/uso terapêutico , Esmalte Dentário , Dureza , Nanopartículas/uso terapêutico
12.
Minerva Dent Oral Sci ; 72(5): 239-246, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37255306

RESUMO

BACKGROUND: Tobacco is a major risk factor in oral diseases. Considering the important role of expression miRNA molecules in different diseases, the present study aimed to compare the expression of salivary miRNA-6734, miRNA-3123 and miRNA-4483 in smoker and non-smoker peoples. METHODS: In this case-control study, salivary samples were obtained from 30 smoker's patients and 27 healthy nonsmokers and matched in term of age and sex. RNA was extracted in salivary samples and gene expression was evaluated in all samples. Statistical analysis of data was performed using T and chi-square tests by SPSS (Ver. 16) software at a significant level of less than 0.05. RESULTS: The results of this study showed that the expression level of miRNA-3123 and miRNA-4483 in smokers group was 2.8 and 3.2, respectively, which was increased compared to non-smokers with expression level of 1 (P<0.01). There was a significant decrease in the expression rate of miRNA-6734 in smokers (0.6%) compared to non-smokers (P<0.05). CONCLUSIONS: Based on the results of this study, considering the increasing miRNA-4483 and miRNA-3123 level, as well as the reducing miRNA-6734 level in smokers compared to non-smokers, it seems that evaluation of these two miRNAs as indicator for diagnosis and determination of prognosis of oral diseases associated with smoking can be used.

13.
Lasers Med Sci ; 38(1): 112, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103664

RESUMO

Periodontal disease is one of the most common chronic diseases in the oral cavity that causes tooth loss. Root scaling and leveling cannot eliminate all periodontal pathogens, and the use of antibacterial agents or lasers can increase the efficiency of mechanical methods. The aim of this study was to evaluate and compare the antibacterial activity of cadmium telluride nanocrystals in combination with 940-nm laser diode. Cadmium telluride nanocrystals were prepared by a green route of synthesis in aqueous medium. The results of this study showed that cadmium telluride nanocrystals significantly inhibit the growth of P. gingivalis. The antibacterial property of this nanocrystal increases with increasing its concentration, laser diode 940-nm irradiation and with increasing the time. It was shown that the antibacterial activity of combination of 940-nm laser diode and cadmium telluride nanocrystals is greater than the effect of either alone and can have a similar effect with its long-term presence of microorganisms. This is very important because it is not possible to use these nanocrystals in the mouth and in the periodontal bag for a long time.


Assuntos
Nanopartículas , Doenças Periodontais , Humanos , Bactérias Anaeróbias , Antibacterianos/farmacologia , Doenças Periodontais/tratamento farmacológico , Lasers Semicondutores/uso terapêutico , Porphyromonas gingivalis
14.
BMC Oral Health ; 23(1): 249, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118787

RESUMO

OBJECTIVES: This experimental study aimed to assess the effect of copper oxide nanoparticles (CuONPs) and light-emitting diode (LED) irradiation on the cell viability and osteogenic/odontogenic differentiation of human SCAPs. METHODS: After the culture of SCAPs, the effects of different concentrations of CuONPs on cell viability were evaluated by the methyl thiazolyl tetrazolium (MTT) assay after 24 and 48 h, and the optimal concentration was determined (n = 12). SCAPs were then divided into four groups based on the type of treatment: (I) no-treatment control group, (II) exposure to CuONPs, (III) LED irradiation (635 nm, 200 mW/cm2) for 30 s, and (IV) exposure to CuONPs combined with LED irradiation. CuONPs were synthesized by a green technique, which was based on reduction and simultaneous stability of copper ions by using the pomegranate peel extract. After treatments, the expression of osteogenic/odontogenic markers including dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), alkaline phosphatase (ALP), and dentin matrix acidic phosphoprotein 1 (DMP1) was evaluated in all four groups using quantitative real-time polymerase chain reaction (PCR) (n = 16). Also, osteogenic differentiation of SCAPs was evaluated qualitatively by alizarin red staining (ARS) to assess the matrix mineralization (n = 4). SPSS version 18 was used for data evaluation. The Kruskal-Wallis and Mann-Whitney tests were used to compare the groups. RESULTS: Exposure to 1 µg/mL CuONPs resulted in maximum viability of SCAPs. Concentrations of CuONPs over 10 µg/mL significantly decreased the viability of SCAPs. Real-time PCR showed that the expression of DMP1, BSP, ALP, and DSPP in CuONPs + LED and LED groups was significantly higher than that in CuONPs and control groups at both 24 and 48 h (P < 0.05). The density of ARS increased in all experimental groups after 24 h, and in CuONPs + LED and CuONPs groups after 48 h, compared to the control group. CONCLUSION: Addition of CuONPs and LED irradiation of SCAPs in the culture medium significantly enhanced their osteogenic/odontogenic differentiation.


Assuntos
Cobre , Osteogênese , Humanos , Sobrevivência Celular , Cobre/farmacologia , Cobre/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Óxidos/farmacologia , Proliferação de Células , Células Cultivadas
15.
Front Bioeng Biotechnol ; 10: 1019821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406206

RESUMO

The main goals of medicine consist of early detection and effective treatment of different diseases. In this regard, the rise of exosomes as carriers of natural biomarkers has recently attracted a lot of attention and managed to shed more light on the future of early disease diagnosis methods. Here, exosome biogenesis, its role as a biomarker in metabolic disorders, and recent advances in state-of-art technologies for exosome detection and isolation will be reviewed along with future research directions and challenges regarding the manipulation and genetic engineering of exosomes for potential in vitro and in vivo disease diagnosis approaches.

16.
BMC Oral Health ; 22(1): 525, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424610

RESUMO

OBJECTIVE: Nanomaterials with superior properties such as high surface area over volume ratio are widely used in dentistry and medicine. This in vitro study was performed to synthesize and characterize nano bioactive glass (nBG) and to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) containing nBG (CPP-ACP@nBG) on enamel remineralization by its application to pH-cycled, synthetically demineralized enamel surfaces. MATERIALS AND METHODS: nBG particles were prepared by sol-gel method. X-ray diffraction pattern (XRD), Fourier-transform infrared spectroscopy (FTIR) and transmittance electron microscopy (TEM) were used for nBG characterization. Synthetic CPP-ACP paste was prepared and nBG particles were added to it. To evaluate the degree of remineralization, 32 healthy human premolars were selected. The samples were randomly divided into 4 groups as: Group 1: Commercial CPP-ACFP (MI paste plus), Group 2: Synthetic casein phosphopeptide-amorphous calcium phosphate containing fluoride (CPP-ACP@F), Group 3: Synthetic CPP/ACP containing nBG (CPP-ACP@nBG), and Group 4: Control (received no treatment). The pastes were then applied on the tooth surfaces for 28 days. The Vickers microhardness of enamel surfaces was evaluated, and enamel surface morphology was assessed using scanning electron microscopy (SEM). RESULTS: X-Ray diffraction pattern (XRD) of the synthesized nBG show its crystalline nature with the Larnite crystalline mode. Transmittance electron microscope (TEM) microimage of the synthesized nBG shows its formation as less that 100 nm spherical nanoparticle with partial agglomeration. Fourier transform infrared spectroscopy (FTIR) confirm the success formation of nBG with high purity. The results of this study showed that microhardness of the experimental groups was significantly higher than the control group (p ≥ 0.05). SEM images showed a layer of hydroxyapatite in the CPP-ACP@nBG, synthetic and commercial CPP-ACP@F remineralized groups. CONCLUSION: The results of this study demonstrated that CPP-ACP@F and CPP-ACP@nBG remineralize the surface of the demineralized enamel. Microhardness of the remineralized enamel in the CPP-ACP@nBG group was higher than synthetic and commercial CPP-ACP@F groups.


Assuntos
Caseínas , Remineralização Dentária , Humanos , Caseínas/farmacologia , Remineralização Dentária/métodos , Fosfopeptídeos/farmacologia , Esmalte Dentário , Fluoretos/farmacologia
17.
Front Chem ; 10: 943003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105306

RESUMO

In this study, two novel biomimetic modular peptide motifs based on the alpha-2 subunit of type IV collagen (CO4A2) were designed and immobilized on a graphene platform to imitate integrin and heparan sulfate- (HS-) binding proteins. The in silico study was used to design 9-mer K[KGDRGD]AG and 10-mer KK[SGDRGD]AG for testing designed Integrin-Binding Peptide (dIBP) and HS-Binding Peptide (dHBP). The virtual docking technique was used to optimize the peptide motifs and their relevant receptors. Molecular dynamic (MD) simulation was used to evaluate the stability of peptide-receptor complexes. The effect of the platform on the differentiation of human mesenchymal stem cells (hMSCs) to hepatic-like cells (HLCs) was evaluated. After differentiation, some hepatic cells' molecular markers such as albumin, AFP, CK-18, and CK-19 were successfully followed. Graphene-heparan sulfate binding peptide (G-HSBP) enhances the mature hepatic markers' expression instead of control (p ≤ 0.05). The pathological study showed that the designed platform is safe, and no adverse effects were seen till 21 days after implantation.

18.
Front Chem ; 10: 890252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646816

RESUMO

Brucellosis is a systemic disease in both acute and chronic forms which can affect any organ or tissue in the body. One of the biggest issues in treating this disease is its relapse. In this study, a complete treatment of brucellosis was evaluated using enhanced performance of doxycycline and hydroxychloroquine drugs by using solid lipid nanoparticles (SLN) conjugated cadmium-telluride quantum dots. The double emulsion method was used to prepare SLN and cadmium-telluride quantum dots. The physicochemical properties of NPs were determined. The effect of nanoparticle-loaded antibiotics against Brucella melitensis was determined by well diffusion, minimum inhibitory concentration (MIC), cell culture, and animal studies. The means of particle size, PDI, zeta potential, drugs loading, and encapsulation efficiency were 214 ± 25 nm, 0.385 ± 0.022, -18.7 ± 2.3 mV, 17.7 ± 1.5%, and 94.15 ± 2.6%, respectively. The results of FTIR and DSC showed that no chemical reaction occurred between the components of the NPs. The effect of free drug and NPs on bacteria was the same by well diffusion and MIC method. Drug-loaded NPs significantly reduced the number of CFUs in the cell line and acute and chronic brucellosis compared to the free drug. In conclusion, the synthesized nanoparticles were safe and green. With the slow release of the drug (100 h), the accumulation of the drug at the bacterial site increases and causes a greater effect on the B. melitensis and improves the disease of brucellosis. The use of synthesized nanodrugs in this study had promising therapeutic results.

19.
Lasers Med Sci ; 37(7): 2989-2997, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704219

RESUMO

Dentinal hypersensitivity (DH) is a common clinical condition usually associated with exposed dentinal surfaces. The aim of this study was to study the effect of sodium fluoride varnish, Gluma, and Er,Cr:YSGG laser, in the dentin hypersensitivity treatment. One hundred sixty-five teeth with dentin hypersensitivity in 55 patients were involved in this study. Teeth are divided into five groups based on the received treatment (n = 33): G group: Gluma; F group: sodium fluoride varnish (5%); L group: Er,Cr:YSGG laser (wavelength 2780 nm, frequency 20 Hz, power 0.25 W, energy density 44.3 J/cm2, and pulse width of 150 µs at distance of 1 mm for 30 s) which was followed by Er,Cr:YSGG laser; GL group: Gluma + laser; VL group: both sodium fluoride varnish and Gluma, which are common treatments for hypersensitivity, were selected as control groups. The treatment was performed in one session, and the sensitivity to air spray conditioning was recorded after the treatment, at 15 min, 1 week, 1 month, and 6 months as the VAS. Statistical analysis was performed using SPSS Ver. 21 software. One-way ANOVA was used to compare the VAS between all treatment groups at each time-point. One-way repeated measurements ANOVA (RM-ANOVA) and two-way-repeated measurements ANOVA (RM-ANOVA) were used to compare the hypersensitivity of each group and sensitivity of all treatment groups, respectively. Tukey post hoc test was used to compare the groups pairwise. The hypersensitivity between different groups at before and 15 min after the treatment was not significantly different (P = 0.063). The hypersensitivity of all studied groups was decreased after the treatment. The Er,Cr:YSGG laser, alone or in combination with Gluma, in 1 week, 1 month, and 6 month follow-ups, had significantly reduced the hypersensitivity instead of sodium fluoride varnish. All treatments significantly reduced the dentin hypersensitivity up to 6 months. Er,Cr:YSGG laser alone or in combination with Gluma was more effective than sodium fluoride varnish; however, it was not significantly different from other treatments. In a 6-month follow-up of dentine hypersensitivity treatment, Gluma had a significantly higher effect than sodium fluoride. Trial registration: IRCT20190422043343N1. Registered 19 July 2019.


Assuntos
Sensibilidade da Dentina , Lasers de Estado Sólido , Dentina , Sensibilidade da Dentina/tratamento farmacológico , Sensibilidade da Dentina/radioterapia , Fluoretos Tópicos/farmacologia , Fluoretos Tópicos/uso terapêutico , Glutaral , Humanos , Lasers de Estado Sólido/uso terapêutico , Ácidos Polimetacrílicos , Sódio/farmacologia , Fluoreto de Sódio/farmacologia , Fluoreto de Sódio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA