Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 26(6): 1008-1021, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38770594

RESUMO

Plant leaves and water drops residing on them interact with atmospheric oxidants, impacting the deposition and emission of trace gases and mediating leaf damage from air pollution. Characterizing the chemical composition and reactivity of the water-soluble material on leaf surfaces is thus essential for improving our understanding of atmosphere-biosphere interactions. However, the limited knowledge of sources and nature of these chemicals challenges sampling decisions. This work investigates how sampling variables and environmental factors impact the quantity and composition of water-soluble material sampled from wet leaves and proposes a flexible protocol for its collection. The ratio of solvent volume-to-leaf area, the solvent-to-leaf contact time, and environmental parameters - including the occurrence of rain, plant location and its metabolism - drive solute concentration in leaf soaks. Despite minor variations, UV-vis absorption spectra of leaf soaks are comparable to authentic raindrops collected from the same tree and share features with microbial dissolved organic matter - including overall low aromaticity, low chromophore content, and low average molecular weight. In addition to guiding the development of a sampling protocol, our data corroborate recent hypotheses on the amount, origin, nature, and reactivity of water-soluble organics on wet leaves, providing new directions of research into this highly interdisciplinary topic.


Assuntos
Monitoramento Ambiental , Folhas de Planta , Folhas de Planta/química , Monitoramento Ambiental/métodos
2.
Chem Rev ; 124(9): 5764-5794, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38652704

RESUMO

Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 µg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.


Assuntos
Atmosfera , Folhas de Planta , Propriedades de Superfície , Folhas de Planta/química , Folhas de Planta/metabolismo , Atmosfera/química
3.
Environ Sci Technol ; 57(45): 17374-17383, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37930106

RESUMO

Cooking activities emit myriad low-volatility, semivolatile, and highly volatile organic compounds that together form particles that can accumulate to large indoor concentrations. Absorptive partitioning thermodynamics governs the particle-phase organic aerosol concentration mainly via temperature and sorbing mass impacts. Cooking activities can increase the organic sorbing mass by 1-2 orders of magnitude, increasing particle-phase concentrations and affecting emission rate calculations. Although recent studies have begun to probe the volatility characteristics of indoor cooking particles, parametrizations of cooking particle mass emissions have largely neglected these thermodynamic considerations. Here, we present an improved thermodynamics-based model framework for estimating condensable organic material emission rates from a time series of observed concentrations, given that adequate measurements or assumptions can be made about the volatility of the emitted species. We demonstrate the performance of this methodology by applying data from stir-frying experiments performed during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign to a two-zone box model representing the UTest House. Preliminary estimates of organic mass emitted on a per-stir-fry basis for three types of organic aerosol factors are presented. Our analysis highlights that using traditional nonvolatile particle models and emission characterizations for some organic aerosol emitting activities can incorrectly attribute concentration changes to emissions rather than thermodynamic effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Aerossóis/análise , Culinária , Temperatura , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos
4.
Sci Adv ; 9(41): eadh8263, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831770

RESUMO

Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Fumaça , Monitoramento Ambiental
5.
Environ Sci Technol ; 57(43): 16446-16455, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856830

RESUMO

Energy-efficient residential building standards require the use of mechanical ventilation systems that replace indoor air with outdoor air. Transient outdoor pollution events can be transported indoors via the mechanical ventilation system and other outdoor air entry pathways and impact indoor air chemistry. In the spring of 2022, we observed elevated levels of NOx (NO + NO2) that originated outdoors, entering the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility through the mechanical ventilation system. Using measurements of NOx, ozone (O3), and volatile organic compounds (VOCs), we modeled the effect of the outdoor-to-indoor ventilation of NOx pollution on the production of nitrate radical (NO3), a potentially important indoor oxidant. We evaluated how VOC oxidation chemistry was affected by NO3 during NOx pollution events compared to background conditions. We found that nitric oxide (NO) pollution introduced indoors titrated O3 and inhibited the modeled production of NO3. NO ventilated indoors also likely ceased most gas-phase VOC oxidation chemistry during plume events. Only through the artificial introduction of O3 to the ventilation duct during a NOx pollution event (i.e., when O3 and NO2 concentrations were high relative to typical conditions) were we able to measure NO3-initiated VOC oxidation products, indicating that NO3 was impacting VOC oxidation chemistry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Óxido Nítrico , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Nitrogênio/análise , Ozônio/análise , Monitoramento Ambiental
6.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36603843

RESUMO

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Radical Hidroxila/análise , Radical Hidroxila/química , Fotólise , Poluição do Ar em Ambientes Fechados/análise , Óxidos de Nitrogênio/análise , Ozônio/análise , Culinária , Ácido Nitroso/análise , Ácido Nitroso/química , Poluentes Atmosféricos/análise
7.
Environ Sci Process Impacts ; 25(2): 314-325, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36519677

RESUMO

Cooking organic aerosol (COA) is frequently observed in urban field studies. Like other forms of organic aerosol, cooking emissions partition between gas and particle phases; a quantitative understanding of the species volatility governing this partitioning is essential to model the transport and fate of COA. However, few cooking-specific volatility measurements are available, and COA is often assumed to be semi-volatile. We use measurements from a thermodenuder coupled to an aerosol chemical speciation monitor during the HOMEChem study to investigate the chemical components and volatility of near-source COA. We found that fresh emissions of COA have three chemical components: a biomass burning-like component (COABBOA), a lower volatility component associated with cooking oil (COAoil-2), and a higher volatility component associated with cooking oil (COAoil-1). We provide characteristic mass spectra and volatility profiles for these components. We develop a model to describe the partitioning of these emissions as they dilute through the house and outdoor atmosphere. We show that the total emissions from cooking can be misclassified in air quality studies that use semi-volatile emissions as a proxy for cooking aerosol, due to the presence of substantial mass in lower volatility bins of COA not generally represented in models. Primary emissions of COA can thus be not only primary sources of urban aerosol pollution, but also sources of semi-volatile organic compounds that undergo secondary chemistry in the atmosphere and contribute to ozone formation and secondary organic aerosol.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Atmosfera , Aerossóis/química , Culinária
8.
Environ Sci Technol ; 56(19): 13573-13583, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137564

RESUMO

Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios. The instruments measured HONO at different locations in a house featuring a typical air change rate (ACR) (0.5 h-1) and an enhanced mixing rate (∼8 h-1). Despite the distance between the instruments, measurements from the two instruments agreed to within their respective uncertainties (slope = 0.85, R2 = 0.92), indicating that the lifetime of HONO is long enough for it to be quickly distributed indoors, although spatial gradients occurred during ventilation periods. This suggests that emissions of HONO from any source can mix throughout the house and can contribute to OH radical production in sunlit regions, enhancing the oxidative capacity indoors. Measurement discrepancies were likely due to interferences with the LP/LIF instrument as well as calibration uncertainties associated with both instruments.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Poluição do Ar em Ambientes Fechados/análise , Ácido Nitroso , Oxirredução , Ventilação
9.
Environ Sci Technol ; 56(17): 12148-12157, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35952310

RESUMO

Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Monitoramento Ambiental , Gases , Humanos , Material Particulado/análise
11.
Environ Sci Technol ; 56(12): 7598-7607, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653434

RESUMO

Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 ± 0.30 ppb (range 0.012-6.1 ppb), higher than outdoor levels (mean 0.026 ± 0.15 ppb). From the month-long study, cooking and chlorine bleach cleaning are identified as the most important human-related sources of these nitrogen-containing gases. Gas oven cooking emits more isocyanates than stovetop cooking. The emission ratios HNCO/CO (ppb/ppm) during stovetop and oven cooking (mean 0.090 and 0.30) are lower than previously reported values during biomass burning (between 0.76 and 4.6) and cigarette smoking (mean 2.7). Bleach cleaning led to an increase of the HNCO mixing ratio of a factor of 3.5 per liter of cleaning solution used; laboratory studies indicate that isocyanates arise via reaction of nitrogen-containing precursors, such as indoor dust. Partitioned in a temperature-dependent manner to indoor surface reservoirs, HNCO was present at the beginning of HOMEChem, arising from an unidentified source. HNCO levels are higher at the end of the campaign than the beginning, indicative of occupant activities such as cleaning and cooking; however the direct emissions of humans are relatively minor.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Cianatos , Monitoramento Ambiental , Gases , Humanos , Isocianatos , Nitrogênio
12.
Sci Adv ; 8(25): eabn8016, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749501

RESUMO

The chemistry of indoor surfaces and the role of microbes in shaping and responding to that chemistry are largely unexplored. We found that, over 1 month, people's presence and activities profoundly reshaped the chemistry of a house. Molecules associated with eating/cooking, bathroom use, and personal care were found throughout the entire house, while molecules associated with medications, outdoor biocides, and microbially derived compounds were distributed in a location-dependent manner. The house and its microbial occupants, in turn, also introduced chemical transformations such as oxidation and transformations of foodborne molecules. The awareness of and the ability to observe the molecular changes introduced by people should influence future building designs.

14.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35048927

RESUMO

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Assuntos
Atmosfera , Água do Mar , Aerossóis/química , Atmosfera/química , Oceanos e Mares , Fitoplâncton , Água do Mar/química
15.
Environ Sci Technol ; 56(1): 109-118, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34910454

RESUMO

Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied. We characterized indoor ROC in a test house during unoccupied, cooking, and cleaning scenarios using various online mass spectrometry and gas chromatography measurements of gaseous and particulate organics. Cooking greatly impacted indoor ROC concentrations and bulk physicochemical properties (e.g., volatility and oxidation state), while cleaning yielded relatively insubstantial changes. Additionally, cooking enhanced the reactivities of hydroxyl radicals and ozone toward indoor ROC. We observed consistently higher median ROC concentrations indoors (≥223 µg C m-3) compared to outdoors (54 µg C m-3), demonstrating that buildings can be a net source of reactive carbon to the outdoor atmosphere, following its removal by ventilation. We estimate the unoccupied test house emitted 0.7 g C day-1 from ROC to outdoors. Indoor ROC emissions may thus play an important role in air quality and secondary pollutant formation outdoors, particularly in urban and suburban areas, and indoors during the use of oxidant-generating air purifiers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Material Particulado/análise
16.
Environ Sci Technol ; 55(23): 15637-15645, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813317

RESUMO

Secondary organic aerosol formation via condensation of organic vapors onto existing aerosol transforms the chemical composition and size distribution of ambient aerosol, with implications for air quality and Earth's radiative balance. Gas-to-particle conversion is generally thought to occur on a continuum between equilibrium-driven partitioning of semivolatile molecules to the pre-existing mass size distribution and kinetic-driven condensation of low volatility molecules to the pre-existing surface area size distribution. However, we offer experimental evidence in contrast to this framework. When catechol is sequentially oxidized by O3 and NO3 in the presence of (NH4)2SO4 seed particles with a single size mode, we observe a bimodal organic aerosol mass size distribution with two size modes of distinct chemical composition with nitrocatechol from NO3 oxidation preferentially condensing onto the large end of the pre-existing size distribution (∼750 nm). A size-resolved chemistry and microphysics model reproduces the evolution of the two distinct organic aerosol size modes─heterogeneous nucleation to an independent, nitrocatechol-rich aerosol phase.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Catecóis , Nitratos , Tamanho da Partícula
17.
Front Bioeng Biotechnol ; 9: 641599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660544

RESUMO

Coordination of efforts to assess the challenges and pain points felt by industries from around the globe working to reduce COVID-19 transmission in the indoor environment as well as innovative solutions applied to meet these challenges is mandatory. Indoor infectious viral disease transmission (such as coronavirus, norovirus, influenza) is a complex problem that needs better integration of our current knowledge and intervention strategies. Critical to providing a reduction in transmission is to map the four core technical areas of environmental microbiology, transmission science, building science, and social science. To that end a three-stage science and innovation Summit was held to gather information on current standards, policies and procedures applied to reduce transmission in built spaces, as well as the technical challenges, science needs, and research priorities. The Summit elucidated steps than can be taken to reduce transmission of SARS-CoV-2 indoors and calls for significant investments in research to enhance our knowledge of viral pathogen persistence and transport in the built environment, risk assessment and mitigation strategy such as processes and procedures to reduce the risk of exposure and infection through building systems operations, biosurveillance capacity, communication form leadership, and stakeholder engagement for optimal response. These findings reflect the effective application of existing knowledge and standards, emerging science, and lessons-learned from current efforts to confront SARS-CoV-2.

18.
Environ Sci Process Impacts ; 23(10): 1476-1487, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34523653

RESUMO

Particle emissions from cooking are a major contributor to residential indoor air pollution and could also contribute to ambient concentrations. An important constituent of these emissions is light-absorbing carbon, including black carbon (BC) and brown carbon (BrC). This work characterizes the contributions of indoor and outdoor sources of BC and BrC to the indoor environment by concurrently measuring real-time concentrations of these air pollutants indoors and outdoors during the month-long HOMEChem study. The median indoor-to-outdoor ratios of BC and BrC during the periods of no activity inside the test house were 0.6 and 0.7, respectively. The absorption Ångström exponent was used to characterize light-absorbing particle emissions during different activities and ranged from 1.1 to 2.7 throughout the campaign, with the highest value (indicative of BrC-dominated emissions) observed during the preparation of a simulated Thanksgiving Day holiday style meal. An indoor BC exposure assessment shows that exposure for an occupant present in the kitchen area was ∼4 times higher during Thanksgiving Day experiments (primarily due to candle burning) when compared to the background conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Carbono/análise , Culinária , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise
19.
Environ Sci Technol ; 55(16): 10987-10993, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34342979

RESUMO

Water-soluble trace gas (WSTG) loss from indoor air via air conditioning (AC) units has been observed in several studies, but these results have been difficult to generalize. In the present study, we designed a box model that can be used to investigate and estimate WSTG removal due to partitioning to AC coil condensate. We compared the model output to measurements of a suite of organic acids cycling in an indoor environment and tested the model by varying the input AC parameters. These tests showed that WSTG loss via AC cycling is influenced by Henry's law constant of the compound in question, which is controlled by air and water temperatures and the condensate pH. Air conditioning unit specifications also impact WSTG loss through variations in the sensible heat ratio, the effective recirculation rate of air through the unit, and the timing of coil and fan operation. These findings have significant implications for indoor modeling. To accurately model the fate of indoor WSTGs, researchers must either measure or otherwise account for these unique environmental and operational characteristics.


Assuntos
Poluição do Ar em Ambientes Fechados , Ar Condicionado , Poluição do Ar em Ambientes Fechados/análise , Gases , Compostos Orgânicos , Água
20.
Environ Sci Technol ; 55(18): 12172-12179, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34464124

RESUMO

Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the perhaps unintended consequences of various air cleaning approaches via indoor air chemistry. Introduction of new chemical agents or reactive processes can initiate complex chemistry that results in the release of reactive intermediates and/or byproducts into the indoor environment. Since air cleaning systems are often continuously running to maximize their effectiveness and most people spend a vast majority of their time indoors, human exposure to both primary and secondary products from air cleaners may represent significant exposure risk. This Perspective highlights the need for further study of chemically reactive air cleaning and disinfection methods before broader adoption.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos , SARS-CoV-2 , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...