Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fundam Clin Pharmacol ; 37(1): 4-30, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35996185

RESUMO

Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3ß) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3ß and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3ß and PI3/Akt/CREB/BDNF signaling pathways.


Assuntos
Lítio , Fármacos Neuroprotetores , Humanos , Lítio/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose , Inflamação/tratamento farmacológico
2.
Behav Brain Res ; 386: 112597, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32198107

RESUMO

AIM: Neurodegeneration is one of the serious adverse effects of stimulant agents such as nicotine. Minocycline possess established neuroprotective properties. The role of CREB-BDNF signaling pathway in mediating the neuroprotective effects of minocycline against nicotine-induced neurodegeneration in rats was evaluated in current study. METHODS: Seventy adult male rats were divided randomly into seven groups. Group 1 and 2, received 0.7 ml/rat of normal saline (i.p) and nicotine (10 mg/kg, s.c) respectively. Groups 3, 4, 5 and 6, treated concurrently with nicotine (10 mg/kg) and minocycline (10, 20, 30 and 40 mg/kg, i.p, respectively) for 21 days. Group 7 received minocycline alone (40 mg/kg, i.p) for 21 days. From 17th to 21 st days of experiment, Morris water maze (MWM) was used to evaluate learning and spatial memory in rats treated in different groups. According to the critical role of hippocampus in cognitive behavior, hippocampal neurodegenerative parameters (oxidative stress and inflammatory biomarkers) and also cyclic AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) levels were evaluated in isolated hippocampus in day 22 of experiment and after drug treatment. Also hippocampal cell density and tissue changes were evaluated by hematoxylin and eosin staining. RESULT: Nicotine administration impaired the learning and spatial memory in rats and simultaneous treatment with various doses of minocycline attenuated the nicotine-induced cognition disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of oxidized form of glutathione (GSSG), interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and Bax protein, while decreasing reduced form of glutathione (GSH), Bcl-2 protein, P-CREB and BDNF levels in the hippocampus of experimental animals. Nicotine also reduced the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) in the hippocampus. Minocycline attenuated nicotine-induced neurodegeneration and elevating CREB (both forms) and BDNF levels. Also minocycline treatment alone increases the cognitive activity and increased CREB (both forms) and BDNF levels and decreased oxidative stress, inflammation and apoptotic biomarkers. Minocycline at high doses cause inhibition of nicotine induced cell density and changes in both area of dentate gyrus (DG) and CA1 in hippocampus. CONCLUSION: It can be concluded that minocycline, probably through activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced neurodegeneration in rat hippocampus.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Minociclina/farmacologia , Nicotina/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Minociclina/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nicotina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA