Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 67, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619645

RESUMO

Titanium dioxide (TiO2) nanoparticles have gained significant attention due to their wide-ranging applications. This research explores an approach to functionalize Niobium Nitrogen Titanium Dioxide nanoparticles (Nb-N-TiO2 NPs) with Mentha arvensis ethanolic leaf extracts. This functionalization allows doped NPs to interact with the bioactive compounds in extracts, synergizing their antioxidant activity. While previous studies have investigated the antioxidant properties of TiO2 NPs synthesized using ethanolic extracts of Mentha arvensis, limited research has focused on evaluating the antioxidant potential of doped nanoparticles functionalized with plant extracts. The characterization analyses are employed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Ultraviolet-visible (UV-Vis) spectroscopy to evaluate these functionalized doped nanoparticles thoroughly. Subsequently, the antioxidant capabilities through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays have been assessed. Within functionalized Nb-N-TiO2, the FTIR has a distinctive peak at 2350, 2010, 1312, 1212, and 1010 cm-1 with decreased transmittance associated with vibrations linked to the Nb-N bond. SEM revealed a triangular aggregation pattern, 500 nm to 2 µm of functionalized Nb-N-TiO2 NPs. Functionalized doped Nb-N-TiO2 NPs at 500 µg mL-1 exhibited particularly robust antioxidant activity, achieving an impressive 79% efficacy at DPPH assessment; meanwhile, ferric reduction efficiency of functionalized doped Nb-N-TiO2 showed maximum 72.16%. In conclusion, doped Nb-N-TiO2 NPs exhibit significantly enhanced antioxidant properties when functionalized with Mentha arvensis ethanolic extract compared to pure Nb-N-TiO2 manifested that doped Nb-N-TiO2 have broad promising endeavors for various biomedicine applications.

2.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352418

RESUMO

Neuronal ceroid lipofuscinosis (NCL), type 6 (CLN6) is a neurodegenerative disorder associated with progressive neurodegeneration leading to dementia, seizures, and retinopathy. CLN6 encodes a resident-ER protein involved in trafficking lysosomal proteins to the Golgi. CLN6p deficiency results in lysosomal dysfunction and deposition of storage material comprised of Nile Red + lipids/proteolipids that include subunit C of the mitochondrial ATP synthase (SUBC). White matter involvement has been recently noted in several CLN6 animal models and several CLN6 subjects had neuroimaging was consistent with leukodystrophy. CLN6 patient-derived induced pluripotent stem cells (IPSCs) were generated from several of these subjects. IPSCs were differentiated into oligodendroglia or neurons using well-established small-molecule protocols. A doxycycline-inducible transgenic system expressing neurogenin-2 (the I3N-system) was also used to generate clonal IPSC-lines (I3N-IPSCs) that could be rapidly differentiated into neurons (I3N-neurons). All CLN6 IPSC-derived neural cell lines developed significant storage material, CLN6-I3N-neuron lines revealed significant Nile Red + and SUBC + storage within three and seven days of neuronal induction, respectively. CLN6-I3N-neurons had decreased tripeptidyl peptidase-1 activity, increased Golgi area, along with increased LAMP1 + in cell bodies and neurites. SUBC + signal co-localized with LAMP1 + signal. Bulk-transcriptomic evaluation of control- and CLN6-I3N-neurons identified >1300 differentially-expressed genes (DEGs) with Gene Ontogeny (GO) Enrichment and Canonical Pathway Analyses having significant changes in lysosomal, axonal, synaptic, and neuronal-apoptotic gene pathways. These findings indicate that CLN6-IPSCs and CLN6-I3N-IPSCs are appropriate cellular models for this disorder. These I3N-neuron models may be particularly valuable for developing therapeutic interventions with high-throughput drug screening assays and/or gene therapy.

3.
Artif Cells Nanomed Biotechnol ; 52(1): 84-103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38235991

RESUMO

Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.


Photodynamic therapy is a promising tool to revolutionise the treatment landscape for neurological disorders.The nexus between photodynamic therapy and biological drug conjugation is best suited for non-invasive neurological disorder treatment.


Assuntos
Doenças do Sistema Nervoso , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanotecnologia , Sistemas de Liberação de Medicamentos , Doenças do Sistema Nervoso/tratamento farmacológico
4.
Microorganisms ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894202

RESUMO

Nanoparticles have emerged as a prominent area of research in recent times, and silver nanoparticles (AgNPs) synthesized via phyco-technology have gained significant attention due to their potential therapeutic applications. Nodularia haraviana, a unique and lesser-explored cyanobacterial strain, holds substantial promise as a novel candidate for synthesizing nanoparticles. This noticeable research gap underscores the novelty and untapped potential of Nodularia haraviana in applied nanotechnology. A range of analytical techniques, including UV-vis spectral analysis, dynamic light scattering spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction, were used to investigate and characterize the AgNPs. Successful synthesis of AgNPs was confirmed through UV-visible spectroscopy, which showed a surface plasmon resonance peak at 428 nm. The crystalline size of AgNPs was 24.1 nm. Dynamic light scattering analysis revealed that silver oxide nanoparticles had 179.3 nm diameters and a negative surface charge of -18 mV. Comprehensive in vitro pharmacogenetic properties revealed that AgNPs have significant therapeutic potential. The antimicrobial properties of AgNPs were evaluated by determining the minimum inhibitory concentration against various microbial strains. Dose-dependent cytotoxicity assays were performed on Leishmanial promastigotes (IC50: 18.71 µgmL-1), amastigotes (IC50: 38.6 µgmL-1), and brine shrimps (IC50: 134.1 µg mL-1) using various concentrations of AgNPs. The findings of this study revealed that AgNPs had significant antioxidant results (DPPH: 57.5%, TRP: 55.4%, TAC: 61%) and enzyme inhibition potential against protein kinase (ZOI: 17.11 mm) and alpha-amylase (25.3%). Furthermore, biocompatibility tests were performed against macrophages (IC50: >395 µg mL-1) and human RBCs (IC50: 2124 µg mL-1). This study showed that phyco-synthesized AgNPs were less toxic and could be used in multiple biological applications, including drug design and in the pharmaceutical and biomedical industries. This study offers valuable insights and paves the way for further advancements in AgNPs research.

5.
Life (Basel) ; 13(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629640

RESUMO

Focused ultrasound (FUS) has emerged as a promising noninvasive therapeutic modality for treating atherosclerotic arterial disease. High-intensity focused ultrasound (HIFU), a noninvasive and precise modality that generates high temperatures at specific target sites within tissues, has shown promising results in reducing plaque burden and improving vascular function. While low-intensity focused ultrasound (LIFU) operates at lower energy levels, promoting mild hyperthermia and stimulating tissue repair processes. This review article provides an overview of the current state of HIFU and LIFU in treating atherosclerosis. It focuses primarily on the therapeutic potential of HIFU due to its higher penetration and ability to achieve atheroma disruption. The review summarizes findings from animal models and human trials, covering the effects of FUS on arterial plaque and arterial wall thrombolysis in carotid, coronary and peripheral arteries. This review also highlights the potential benefits of focused ultrasound, including its noninvasiveness, precise targeting, and real-time monitoring capabilities, making it an attractive approach for the treatment of atherosclerosis and emphasizes the need for further investigations to optimize FUS parameters and advance its clinical application in managing atherosclerotic arterial disease.

6.
J Clin Med ; 12(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109214

RESUMO

We are pleased to see that Marino et al. have written a Comment: "Choroidal Thickness Measurements in the Case of Diabetic Macular Edema" [...].

7.
Comput Biol Med ; 157: 106767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933414

RESUMO

Erythrocyte aggregation (EA) is a highly dynamic, vital phenomenon to interpreting human hemorheology, which would be helpful for the diagnosis and prediction of circulatory anomalies. Previous studies of EA on erythrocyte migration and the Fåhraeus Effect are based on the microvasculature. They have not considered the natural pulsatility of the blood flow or large vessels and mainly focused on shear rate along radial direction under steady flow to comprehend the dynamic properties of EA. To our knowledge, the rheological characteristics of non-Newtonian fluids under Womersley flow have not reflected the spatiotemporal behaviors of EA or the distribution of erythrocyte dynamics (ED). Hence, it needs to interpret the ED affected by temporal and spatial flow variation to understand the effect of EA under Womersley flow. Here, we demonstrated the numerically simulated ED to decipher EA's rheological role in axial shear rate under Womersley flow. In the present study, the temporal and spatial variations of the local EA were found to mainly depend on the axial shear rate under Womersley flow in an elastic vessel, while mean EA decreased with radial shear rate. The localized distribution of parabolic or M-shape clustered EA was found in a range of the axial shear rate profile (-15 to 15s-1) at low radial shear rates during a pulsatile cycle. However, the linear formation of rouleaux was realized without local clusters in a rigid wall where the axial shear rate is zero. In vivo, the axial shear rate is usually considered insignificant, especially in straight arteries, but it has a great impact on the disturbed blood flow due to the geometrical properties, such as bifurcations, stenosis, aneurysm, and the cyclic variation of pressure. Our findings regarding axial shear rate provide new insight into the local dynamic distribution of EA, which is a critical player in blood viscosity. These will provide a basis for the computer-aided diagnosis of hemodynamic-based cardiovascular diseases by decreasing the uncertainty in the pulsatile flow calculation.


Assuntos
Agregação Eritrocítica , Modelos Cardiovasculares , Humanos , Agregação Eritrocítica/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Hemorreologia , Fluxo Pulsátil/fisiologia , Artérias/fisiologia , Simulação por Computador , Estresse Mecânico
8.
Sci Rep ; 12(1): 22041, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543825

RESUMO

Low-intensity ultrasound (LIUS) enhances the proliferation rate of various mammalian stem cells through mechanical stimulation. This study quantitively finds suitable LIUS stimulation parameters for increasing the proliferation rate of human adipose-derived mesenchymal stem cells (hAdMSCs) for mass production. Various stimulation conditions of LIUS were assessed based on the beam pattern of the ultrasonic transducer and the attenuation of the sound waves. Using optimal LIUS stimulation parameters for enhancing proliferation of hAdMSCs taken from bromodeoxyuridine (BrdU) incorporation assay, long-term culture of hAdMSCs was performed for 16 days. The resultant hAdMSCs were characterized for various biomarkers such as CD34-, CD45-, CD73+, CD95+, CD105+ and cytological staining and a cytokine array assay. LIUS stimulation parameters found for enhancing the hAdMSCs proliferation were the frequency of 5 MHz, an intensity of 300 mWcm-2, a duration of 10 min per day, and continuous waves with a 100% duty cycle. The LIUS stimulated hAdMSCs group showed a 3.25-fold increase in the cell number compared to the control group after 16 days of culture. By confirming the effects of quantitatively measured LIUS stimulation on the enhancement of hAdMSCs proliferation, this study may be a foundation for the applications of LIUS stimulation in the industrial-scale production of hAdMSCs.


Assuntos
Células-Tronco Mesenquimais , Animais , Humanos , Células Cultivadas , Células-Tronco , Ultrassonografia , Ultrassom , Mamíferos
9.
J Clin Med ; 11(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36294492

RESUMO

This observational study investigated the changes in choroidal thickness (ChT) in different patterns of diabetic macular edema (DME) based on image processing using enhanced-depth imaging spectral-domain optical coherence tomography (EDI-SD-OCT). Participants with ocular conditions affecting the fundus view, including retinal diseases, were excluded. After observing the patient's medical record, multicolor fundus photos, thickness maps, and subtypes of DME were diagnosed according to the criteria reported by the Early Treatment Diabetic Retinopathy Study (ETDRS). Edema was classified as focal or diffuse and was subdivided into cystic macular edema (CME), CME with subretinal fluid (CME+), and spongy macular edema (SME). Image processing was performed on the B-scan images from SD-OCT to segment the choroid layer and obtain the choroid thickness. A total of 159 eyes of 81 patients (46 males and 35 females; 57.53 ± 9.78 years of age), and 57 eyes of 30 healthy individuals (age 57.34 ± 8.76 years) were enrolled in this study. Out of 159 eyes, 76 had focal macular edema (FME), 13 exhibited SME, and 51 presented CME. Among those with cystic macular edema, 19 eyes showed subretinal fluid (CME+). The average choroidal thickness in FME, diffuse SME, CME, and CME+ was 216.95 ± 52.94 µm, 243.00 ± 46.34 µm, 221.38 ± 60.78 µm, and 249.63 ± 53.90 µm, respectively. The average choroidal thickness in age-matched controls was 213.88 ± 45.60 µm. Choroidal thickness increases with the severity of edema; choroidal thickness was higher in diffuse macular edema than in FME. However, choroidal thickness increased in cystic macular edema with subretinal fluid (CME+).

10.
Saudi J Biol Sci ; 29(8): 103337, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35770270

RESUMO

Clostridium tetani produce tetanospasmin, a potent exotoxin; that causes tetanus or lockjaw disease. Scientists developed an anti-tetanus toxoid to protect the body from the spasm's neurotoxic effect. In Pakistan recently, 478 cases of neonatal tetanus were reported. The study was carried out at The National Control Laboratory for Biologicals Islamabad, aiming to decipher the effectiveness of the most frequently used tetanus toxoid vaccine adsorbed in Pakistan in comparison to standard reference vaccine having earlier known consistent values. The vaccines included domestic public sector, domestic private sector, imported private sector I, and imported private sector II. The triplicate experiments on purebred Swiss albino mice were performed by immunizing with Tetanus toxoid and then tested parallel with standard reference vaccine. Various analytical tests were performed on the test organism that included flocculation test/identity test, antibody quantification using enzyme-linked immunosorbent assay (ELISA), potency test, abnormal toxicity test, osmolality, pH test, liquid sub-visible particle test, and sterility test. Results of all the vaccines were compared in comparison with the standard reference vaccine. Absorbances of test vaccines were recorded at the lowest dilution by ELISA. The domestic private sector, imported private sector I, imported private sector II and standard reference vaccine were flocculated at mean dilution (Mean: 0.24, 95% CI: 0.1903-0.2897), and the domestic public sector was flocculated at mean dilution (Mean: 0.23, 95% CI: 0.2052-0.2548). All the products were found within the normal ranges where it was concluded that the maximum average titer of 2.81 was observed at dilution 10-1.6, indicating that these vaccines were adequate/suitable for the prevention of tetanus.

11.
Plants (Basel) ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270086

RESUMO

Ilex dipyrena Wall (Aquifoliaceae), is a traditional medicinal plant abundantly found in India and Pakistan. In the current research work, initially, the anatomical characteristics were recorded through microscopic examination of selected plant parts, such as leaf, petiole, and midrib. Then, the quantitative phytochemical screening was performed using standard tests reported in literature. The whole-plant powdered sample was then soaked in methanol to obtain crude extract, which was then fractionated into solvents of different polarities to obtain ethyl acetate, chloroform, butanol, hexane, and aqueous extracts. The phytochemical composition of the crude ethyl acetate and chloroform extracts (being the most active fractions) was then confirmed through HPLC analyses, where the possible phytochemical present were predicted through comparison of retention time of a given compound peak with the available standards. The extracts were also evaluated for their in vitro antioxidant and ani-lipoxygenase potentials using standard methods. The microscopic examination revealed the presence of anomocytic type stomata on the abaxial side of the leaf as well as unicellular trichrome and calcium oxalate druses crystals in the midrib and petiole, with a single, centered U-shaped collateral arterial bundle, which was directed toward the adaxial and the phloem toward the abaxial sides of the selected plant parts, respectively. Almost all tested representative groups of phytochemicals and essential minerals were detected in the selected plant, whereas five possible phytochemicals were confirmed in crude and chloroform extract and seven in ethyl acetate fraction. As antioxidant, chloroform fraction was more potent, which exhibited an IC50 value of 64.99, 69.15, and 268.52 µg/mL, determined through DPPH, ABTS, and FRAP assays. Ethyl acetate extract was also equally potent against the tested free radicals. Chloroform and ethyl acetate extracts were also potent against lipoxygenase, with IC50 value of 75.99 and 106.11 µg/mL, respectively. Based on the results of biological studies, Ilex dipyrena was found to good inhibitor of free radicals and lipoxygenase that could be further investigated to isolate compounds of medicinal importance.

12.
Life (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207423

RESUMO

BACKGROUND: Plants have been considered a vital source of modern pharmaceutics since the paleolithic age. Contemporary chemotherapeutic drugs for cancer therapy are chemical entities sourced from plants. However, synthetic drugs or their derivatives come with severe to moderate side effects for human health. Hence, the quest to explore and discover plant-based novel anticancer drugs is ongoing. Anticancer activities are the primary method to estimate the potential and efficacy of an extract or compound for drug discovery. However, traditional in vitro anticancer activity assays often show poor efficacy due to the lack of in-vivo-like cellular environment. In comparison, the animal-based in vivo assays lack human genetic makeup and have ethical concerns. AIM: This study aimed to overcome the limitations of traditional cell-culture-based anticancer assays and find the most suitable assay for anticancer activity of plant extracts. We first reported utilizing a liver tumor microphysiological system in the anticancer effect assessment of plant extracts. METHODOLOGY: Methanolic extracts of Acer cappadocicum Gled were used to assess anticancer activity against liver tumor microphysiological system (MPS), and cell viability, liver function tests, and antioxidant enzyme activities were performed. Additionally, an embedded transepithelial electrical resistance sensor was utilized for the real-time monitoring of the liver tumor MPS. The results were also compared with the traditional cell culture model. RESULTS: The study demonstrated the superiority of the TEER sensor-based liver tumor MPS by its better anticancer activity based on cell viability and biomarker analysis compared to the traditional in vitro cell culture model. The anticancer effects of the plant extracts were successfully observed in real time, and methanolic extracts of Acer cappadocicum Gled increased the alanine transaminase and aspartate aminotransferase secretion, which may reveal the different mechanisms of these extracts and suggest a clue for the future molecular study of the anticancer pathways. CONCLUSION: Our results show that the liver tumor microphysiological system could be a better platform for plant-based anticancer activity assessment than traditional cell culture models.

13.
Life (Basel) ; 12(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207545

RESUMO

Globally, prematurity is the leading cause of neonatal mortality (babies in the first four weeks of life) and now the second leading cause of mortality after pneumonia in children under age five. The neonatal gut microbial colonization is crucial in the human life cycle. Placental microbiota transmits from the gut microbiota plays a significant role in association with kinship. Simultaneously, this transition is being made from mother to infant. This comparative study explored the diversity of microbiota associated with term and preterm neonates by evaluating the placental samples. The study found that 16/68 (23.5%) full-term placental samples were positive for S. aureus; on the other hand, 4/16 (25%) preterm placental samples confirmed culture growth for S. aureus. Antimicrobial susceptibility patterns showed that Staphylococcusaureus (S. aureus) isolates from both types of samples were resistant to Ofloxacin, Trimethoprim-sulfamethoxazole, Oxacillin, and Cefoxitin. However, Methicillin-Resistant Staphylococcus aureus (MRSA) detection was 43.75% in full-term and 75% in preterm placental samples. Moreover, two isolates were positive for both mecA and PVL virulent genes, and the rest were positive only for the mecA gene. Interestingly few isolates lacked both characteristic MRSA genes, mecA and PVL. Notably, resistances were more inclined towards preterm samples for antimicrobial susceptibility and MRSA screening. It may be concluded that there is a significant presence of S. aureus in the placenta of mothers with term and preterm deliveries which might be responsible for preterm deliveries. Therefore, judicious use of antibiotics during pregnancies may help prevent preterm births.

14.
Polymers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503056

RESUMO

The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug screening. However, engineering microfluidic devices with standardized surface coatings of ECM may improve MPS-based organ-specific emulation for improved drug screening. The influence of surface coatings of different ECM types on tissue development needs to be optimized. Additionally, an intensity-based image processing tool and transepithelial electrical resistance (TEER) sensor may assist in the analysis of tissue formation capacity under the influence of different ECM types. The current study highlights the role of ECM coatings for improved tissue formation, implying the additional role of image processing and TEER sensors. We studied hepatic tissue formation under the influence of multiple concentrations of Matrigel, collagen, fibronectin, and poly-L-lysine. Based on experimental data, a mathematical model was developed, and ECM concentrations were validated for better tissue development. TEER sensor and image processing data were used to evaluate the development of a hepatic MPS for human liver physiology modeling. Image analysis data for tissue formation was further strengthened by metabolic quantification of albumin, urea, and cytochrome P450. Standardized ECM type for MPS may improve clinical relevance for modeling hepatic tissue microenvironment, and image processing possibly enhance the tissue analysis of the MPS.

15.
Life (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34357028

RESUMO

The appearance of novel microbial resistance, diverse cancer ailment and several other morbidities such as appetite loss, hair loss, anemia, cell damage, etc., are among most critical situation that keeps the phytochemical quest on. Thus, this study characterized the antimicrobial, antioxidant, and anticancer potentials of a rarely accessed Acer cappadocicum gled (AC) population thriving in a remote Palas Valley in northern Pakistan. Leaf extracts of the plant were prepared in organic solvents with different polarities through maceration. Extracts were subjected to antimicrobial, antioxidant, and anticancer activities using agar well, DPPH and cell viability assays. A. cappadocicum methanolic extract (ACM) significantly inhibited bacterial growth, followed by n-butanolic extract (ACB) with the second-highest bacterial inhibition. Similar activity was observed against mycelial growth inhibition in plant-fungal pathogen by ACM and ACB. However, human pathogenic fungi did not affect much by extracts. In antioxidant assessment, the chloroform extract (ACC) showed strong scavenging activity and in cytotoxic evaluation, extracts restricted growth proliferation in cancer cells. The inhibitory evidence of extracts, potent scavenging ability, and low cell viability of human-derived cell lines supports the antimicrobial, antioxidant and anticancerous potential of A. cappadocicum. It advances our quest for natural product research.

16.
Nano Converg ; 8(1): 3, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528697

RESUMO

Hepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor ß1 (TGF-ß1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-ß1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.

17.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009052

RESUMO

Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus semicarpifolia. The anticancer activity was performed using cancerous human cell lines (HepG2, Caco-2, A549, MDA-MB-231, and NCI-H1437 carcinoma cells), while the antimicrobial activity was conducted with the agar-well diffusion method. Furthermore, toxicity studies were performed on alveolar and renal primary epithelial cells. Initially, different extracts were prepared by maceration techniques using n-hexane, chloroform, ethyl acetate, butanol, and methanol. The preliminary phytochemical screening showed the presence of secondary metabolites such as alkaloids, tannins, saponins, flavonoids, glycosides, and quinones. The chloroform extract of P. cornuta (PCC) exhibited significant inhibitory activity against Acinetobacter baumannii (16 mm) and Salmonella enterica (14.5 mm). The A. baumannii and S. enterica strains appeared highly susceptible to n-hexane extract of P. cornuta (PCN) with an antibacterial effect of 15 mm and 15.5 mm, respectively. The results also showed that the methanolic extracts of Quercus semecarpifolia (QSM) exhibited considerable antibacterial inhibitory activity in A. baumannii (18 mm), Escherichia coli (15 mm). The QSN and QSE extracts also showed good inhibition in A. baumannii with a 16 mm zone of inhibition. The Rhizopus oryzae strain has shown remarkable mycelial inhibition by PCM and QSN with 16 mm and 21 mm inhibition, respectively. Furthermore, the extracts of P. cornuta and Q. semicarpifolia exhibited prominent growth inhibition of breast (MDA-MB-231) and lung (A549) carcinoma cells with 19-30% and 22-39% cell viabilities, respectively. The gut cell line survival was also significantly inhibited by Q. semicarpifolia (24-34%). The findings of this study provide valuable information for the future development of new antibacterial and anticancer medicinal agents from P. cornuta and Q. semicarpifolia extracts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...