Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38032788

RESUMO

Measuring center-of-pressure (COP) trajectories in out-of-the-lab environments may provide valuable information about changes in gait and balance function related to natural disease progression or treatment in neurological disorders. Traditional equipment to acquire COP trajectories includes stationary force plates, instrumented treadmills, electronic walkways, and insoles featuring high-density force sensing arrays, all of which are expensive and not widely accessible. This study introduces novel deep recurrent neural networks that can accurately estimate dynamic COP trajectories by fusing data from affordable and heterogeneous insole-embedded sensors (namely, an eight-cell array of force sensitive resistors (FSRs) and an inertial measurement unit (IMU)). The method was validated against gold-standard equipment during out-of-the-lab ambulatory tasks that simulated real-world walking. Root-mean-square errors (RMSE) in the mediolateral (ML) and anteroposterior (AP) directions obtained from healthy individuals (ML: 0.51 cm, AP: 1.44 cm) and individuals with neuromuscular conditions (ML: 0.59 cm, AP: 1.53 cm) indicated technical validity. In individuals with neuromuscular conditions, COP-derived metrics showed significant correlations with validated clinical measures of ambulatory function and lower-extremity muscle strength, providing proof-of-concept evidence of the convergent validity of the proposed method for clinical applications.


Assuntos
Aprendizado Profundo , Humanos , Marcha/fisiologia , Caminhada , Redes Neurais de Computação , Pé/fisiologia , Fenômenos Biomecânicos
2.
Folia Histochem Cytobiol ; 47(1): 5-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19419931

RESUMO

The epiphyseal growth plate develops from the cartilaginous-orientated mesenchymal cells that express SOX family genes. This multilayer structure is formed by the proliferation and hypertrophy of cells that synthesize the extracellular matrix composed of collagen (mainly type II, IX, X, XI) and proteoglycans (aggrecan, decorin, annexin II, V and VI). The resting zone is responsible for protein synthesis and maintaining a germinal structure. In the proliferative zone, cells rapidly duplicate. The subsequent morphological changes take place in the transformation zone, divided into the upper and lower hypertrophic layers. In the degenerative zone, the mineralization process becomes intensive due to increased release of alkaline phosphate, calcium and matrix vesicles by terminally differentiated chondrocytes and some other factors e.g., metaphyseal ingrowth vessels. At this level, as well as in the primary and secondary spongiosa zones, chondrocytes undergo apoptosis and are physiologically eliminated. Unlike adult cartilage, in fetal and early formed growth plates, unusual forms such as authophagal bodies, paralysis and dark chondrocytes were also observed. Their ultrastructure differs greatly from apoptotic and normal cartilage cells. Chondrocyte proliferation and differentiation are regulated by various endocrine, paracrine, and autocrine agents such as growth, thyroid and sex hormones, beta-catenin, bone morphogenetic proteins, insulin-like growth factor, iodothyronine deiodinase, leptin, nitric oxide, transforming growth factor beta and vitamin D metabolites. However, the most significant factor is parathyroid hormone-related protein (PTHrP) which is synthesized in the perichondrium by terminally differentiated chondrocytes. Secondary to activation of PTH/PTHrP receptors, PTHrP stimulates cell proliferation by G protein activation and delays their transformation into prehypertrophic and hypertrophic chondrocytes. When proliferation is completed, chondrocytes release Indian hedgehog (Ihh), which stimulates PTHrP synthesis via a feedback loop. Any disturbances of the epiphyseal development and its physiology result in various skeletal abnormalities known as dysplasia.


Assuntos
Lâmina de Crescimento/anatomia & histologia , Lâmina de Crescimento/fisiologia , Animais , Condrócitos/citologia , Condrócitos/ultraestrutura , Condrogênese , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA