Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 289, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798772

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRSL274G) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. METHODS: We used CRISPR/Cas9 homology-directed repair to stably integrate MetRSL274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRSL274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRSL274G-expressing iMSCs with naïve or lipopolysaccharide (LPS)-treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. RESULTS: Our results showed successful integration of MetRSL274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRSL274G-expressing iMSCs can be differentiated from that of THP-1 cells in co-culture and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. CONCLUSIONS: The MetRSL274G-based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.


Assuntos
Células-Tronco Mesenquimais , Metionina tRNA Ligase , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/metabolismo , Lipopolissacarídeos , Secretoma , Células-Tronco Mesenquimais/metabolismo , Aminoácidos
2.
Front Aging Neurosci ; 15: 1179086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637959

RESUMO

Background: Intracytoplasmic inclusions comprised of aggregated alpha-synuclein (αsyn) represent a key histopathological feature of neurological disorders collectively termed "synucleinopathies," which includes Parkinson's disease (PD). Mutations and multiplications in the SNCA gene encoding αsyn cause familial forms of PD and a large body of evidence indicate a correlation between αsyn accumulation and disease. Decreasing αsyn expression is recognized as a valid target for PD therapeutics, with down-regulation of SNCA expression potentially attenuating downstream cascades of pathologic events. Here, we evaluated if Honokiol (HKL), a polyphenolic compound derived from magnolia tree bark with demonstrated neuroprotective properties, can modulate αsyn levels in multiple experimental models. Methods: Human neuroglioma cells stably overexpressing αsyn, mouse primary neurons, and human iPSC-derived neurons were exposed to HKL and αsyn protein and SNCA messenger RNA levels were assessed. The effect of HKL on rotenone-induced overexpression of αsyn levels was further assessed and transcriptional profiling of mouse cortical neurons treated with HKL was performed to identify potential targets of HKL. Results: We demonstrate that HKL can successfully reduce αsyn protein levels and SNCA expression in multiple in vitro models of PD with our data supporting a mechanism whereby HKL acts by post-transcriptional modulation of SNCA rather than modulating αsyn protein degradation. Transcriptional profiling of mouse cortical neurons treated with HKL identifies several differentially expressed genes (DEG) as potential targets to modulate SNCA expression. Conclusion: This study supports a HKL-mediated downregulation of SNCA as a viable strategy to modify disease progression in PD and other synucleinopathies. HKL has potential as a powerful tool for investigating SNCA gene modulation and its downstream effects.

3.
Brain Pathol ; 33(5): e13175, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259617

RESUMO

Alpha-synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic-lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1-PRKN-mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) to mark them for degradation (mitophagy). We found that disease-causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation-induced autophagy activation and by CRISPR/Cas9-mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65-Ub response. We further confirmed increased pS65-Ub-immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65-Ub was associated with neuronal Lewy body-type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1-PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65-Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Mitofagia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ubiquitina/metabolismo , Ubiquitina/farmacologia , Ubiquitina-Proteína Ligases/genética
4.
Res Sq ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205579

RESUMO

Background Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRS L274G ) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. Methods We used CRISPR/Cas9 homology-directed repair to stably integrate MetRS L274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRS L274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRS L274G -expressing iMSCs with naïve or lipopolysaccharide- (LPS) treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. Results Our results showed successful integration of MetRS L274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRS L274G -expressing iMSCs can be differentiated from that of THP-1 cells in co-culture, and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. Conclusions The MetRS L274G -based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.

5.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806091

RESUMO

Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.


Assuntos
Catepsina B/metabolismo , Doença de Parkinson , Catepsina B/genética , Genótipo , Heterozigoto , Humanos , Doença de Parkinson/genética , Penetrância
6.
J Neurotrauma ; 38(5): 655-664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32935624

RESUMO

Traumatic brain injury (TBI) is traditionally characterized by primary and secondary injury phases, both contributing to pathological and morphological changes. The mechanisms of damage and chronic consequences of TBI remain to be fully elucidated, but synaptic homeostasis disturbances and impaired energy metabolism are proposed to be a major contributor. It has been proposed that an increase of extracellular (eATP) adenosine triphosphate (ATP) in the area immediately surrounding impact may play a pivotal role in this sequence of events. After tissue injury, rupture of cell membranes allows release of intracellular ATP into the extracellular space, triggering a cascade of toxic events and inflammation. ATP is a ubiquitous messenger; however, simple and reliable techniques to measure its concentration have proven elusive. Here, we integrate a sensitive bioluminescent eATP sensor known as pmeLUC, with a controlled cortical impact mouse model to monitor eATP changes in a living animal after injury. Using the pmeLUC probe, a rapid increase of eATP is observed proximal to the point of impact within minutes of the injury. This event is significantly attenuated when animals are pretreated with an ATP hydrolyzing agent (apyrase) before surgery, confirming the contribution of eATP. This new eATP reporter could be useful for understanding the role of eATP in the pathogenesis in TBI and may identify a window of opportunity for therapeutic intervention.


Assuntos
Trifosfato de Adenosina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Espaço Extracelular/metabolismo , Animais , Apirase , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Medições Luminescentes , Camundongos , Valor Preditivo dos Testes , Fatores de Tempo
7.
Brain Pathol ; 30(4): 766-778, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32232888

RESUMO

BACKGROUND: Abnormal aggregates of α-synuclein are pathologic hallmarks of multiple system atrophy (MSA) and Lewy body disease (LBD). LBD sometimes coexists with MSA, but the impact of co-pathology, particularly diffuse LBD, on presentation of MSA has not been studied. We aimed to determine the frequency and clinicopathologic features of MSA with LBD (MSA+LBD). METHODS: Using hematoxylin & eosin and α-synuclein-immunostained slides, we assessed the distribution and severity of LBD in 230 autopsy-confirmed MSA patients collected from 1998 to 2018. Alzheimer-type pathology was assessed to assign the likelihood of clinical presentations of dementia with Lewy body (DLB) using the consensus criteria for DLB. We reviewed medical records to characterize clinicopathologic features of MSA+LBD. Genetic risk factors for LBD, including APOE ε4 allele and mutations in GBA, SNCA, LRRK2, and VPS35, were analyzed. RESULTS: LBD was observed in 11 MSA patients (5%); seven were brainstem type, three were transitional type, and one was diffuse type. The latter four had an intermediate or high likelihood of DLB. Three of the four had an antemortem diagnosis of Parkinson's disease with dementia (PDD) or clinically probable DLB. Two patients had neuronal loss in the substantia nigra, but not in striatal or olivocerebellar systems with widespread glial cytoplasmic inclusions, consistent with minimal change MSA. In these cases, LBD was considered the primary pathology, and MSA was considered coincidental. APOE ε4 allele frequency was not different between MSA+LBD and MSA without LBD. Two of nine MSA+LBD patients had a risk variant of GBA (p.T408M and p.E365K). CONCLUSIONS: Although rare, MSA with transitional or diffuse LBD can develop clinical features of PDD or DLB. Minimal change MSA can be interpreted as a coincidental, but distinct, α-synucleinopathy in a subset of patients with diffuse LBD.


Assuntos
Encéfalo/patologia , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Idoso , Feminino , Humanos , Doença por Corpos de Lewy/complicações , Masculino , Atrofia de Múltiplos Sistemas/complicações
8.
Mol Neurodegener ; 15(1): 5, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931835

RESUMO

BACKGROUND: Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson's disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of evidence has shown that αsyn localizes to mitochondria and contributes to the disruption of key mitochondrial processes. Mitochondrial dysfunction is central to the progression of PD and mutations in mitochondrial-associated proteins are found in familial cases of PD. The sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes that play a broad role in cellular metabolism and aging. Interestingly, mitochondrial sirtuin 3 (SIRT3) plays a major role in maintaining mitochondrial function and preventing oxidative stress, and is downregulated in aging and age-associated diseases such as neurodegenerative disorders. Herein, we hypothesize that αsyn is associated with decreased SIRT3 levels contributing to impaired mitochondrial dynamics and biogenesis in PD. METHODS: The level of mitochondrial SIRT3 was assessed in cells expressing oligomeric αsyn within the cytosolic and mitochondrial-enriched fractions. Mitochondrial integrity, respiration, and health were examined using several markers of mitochondrial dynamics and stress response and by measuring the rate of oxygen consumption (OCR). Our findings were validated in a rodent model of PD as well as in human post-mortem Lewy body disease (LBD) brain tissue. RESULTS: Here, we demonstrate that αsyn associates with mitochondria and induces a decrease in mitochondrial SIRT3 levels and mitochondrial biogenesis. We show that SIRT3 downregulation is accompanied by decreased phosphorylation of AMPK and cAMP-response element binding protein (CREB), as well as increased phosphorylation of dynamin-related protein 1 (DRP1), indicative of impaired mitochondrial dynamics. OCR was significantly decreased suggesting a mitochondria respiratory deficit. Interestingly treatment with AMPK agonist 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) restores SIRT3 expression, improves mitochondrial function, and decreases αsyn oligomer formation in a SIRT3-dependent manner. CONCLUSIONS: Together, our findings suggest that pharmacologically increasing SIRT3 levels can counteract αsyn-induced mitochondrial dysfunction by reducing αsyn oligomers and normalizing mitochondrial bioenergetics. These data support a protective role for SIRT3 in PD-associated pathways and contribute significant mechanistic insight into the interplay of SIRT3 and αsyn.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Sirtuína 3/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley
9.
Acta Neuropathol Commun ; 5(1): 51, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645308

RESUMO

Abnormal accumulation of alpha-synuclein (αsyn) is a pathological hallmark of Lewy body related disorders such as Parkinson's disease and Dementia with Lewy body disease. During the past two decades, a myriad of animal models have been developed to mimic pathological features of synucleinopathies by over-expressing human αsyn. Although different strategies have been used, most models have little or no reliable and predictive phenotype. Novel animal models are a valuable tool for understanding neuronal pathology and to facilitate development of new therapeutics for these diseases. Here, we report the development and characterization of a novel model in which mice rapidly express wild-type αsyn via somatic brain transgenesis mediated by adeno-associated virus (AAV). At 1, 3, and 6 months of age following intracerebroventricular (ICV) injection, mice were subjected to a battery of behavioral tests followed by pathological analyses of the brains. Remarkably, significant levels of αsyn expression are detected throughout the brain as early as 1 month old, including olfactory bulb, hippocampus, thalamic regions and midbrain. Immunostaining with a phospho-αsyn (pS129) specific antibody reveals abundant pS129 expression in specific regions. Also, pathologic αsyn is detected using the disease specific antibody 5G4. However, this model did not recapitulate behavioral phenotypes characteristic of rodent models of synucleinopathies. In fact no deficits in motor function or cognition were observed at 3 or 6 months of age. Taken together, these findings show that transduction of neonatal mouse with AAV-αsyn can successfully lead to rapid, whole brain transduction of wild-type human αsyn, but increased levels of wildtype αsyn do not induce behavior changes at an early time point (6 months), despite pathological changes in several neurons populations as early as 1 month.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Modelos Animais de Doenças , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Dependovirus/genética , Vetores Genéticos , Gliose/metabolismo , Gliose/patologia , Células HEK293 , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Atividade Motora/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...