Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1093212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923406

RESUMO

Cystic fibrosis (CF) is a rare autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation is F508del-CFTR (ΔF) which leads the encoded ion channel towards misfolding and premature degradation. The disease is characterized by chronic bronchopulmonary obstruction, inflammation and airways colonization by bacteria, which are the major cause of morbidity and mortality. The STING pathway is the main signaling route activated in the presence of both self and pathogen DNA, leading to Type I Interferon (IFN I) production and the innate immune response. In this study, we show for the first time the relationship existing in CF between resistant and recurrent opportunistic infections by Pseudomonas aeruginosa and the innate immunity impairment. We demonstrate through ex vivo and in vivo experiments that the pathway is inadequately activated in ΔF condition and the use of direct STING agonists, as 2',3'-cyclic GMP-AMP (2', 3' cGAMP), is able to restore the immune response against bacterial colonization. Indeed, upon treatment with the STING pathway agonists, we found a reduction of colony forming units (CFUs) consequent to IFN-ß enhanced production in Pseudomonas aeruginosa infected bone marrow derived macrophages and lung tissues from mice affected by Cystic Fibrosis. Importantly, we also verified that the impairment detected in the primary PBMCs obtained from ΔF patients can be corrected by 2', 3' cGAMP. Our work indicates that the cGAS/STING pathway integrity is crucial in the Cystic Fibrosis response against pathogens and that the restoration of the pathway by 2', 3' cGAMP could be exploited as a possible new target for the symptomatic treatment of the disease.


Assuntos
Fibrose Cística , Interferon Tipo I , Camundongos , Animais , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística , Imunidade Inata/genética , Interferon Tipo I/metabolismo , Macrófagos , Proteínas Serina-Treonina Quinases/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo
2.
J Immunol ; 206(10): 2420-2429, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941660

RESUMO

We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-ß production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNß production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-ß production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.


Assuntos
COVID-19/imunologia , Proteínas de Ligação ao GTP/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Transglutaminases/imunologia , Animais , COVID-19/genética , COVID-19/patologia , Proteínas de Ligação ao GTP/genética , Humanos , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Interferon beta/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transglutaminases/genética
3.
Cell Death Dis ; 12(3): 249, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674551

RESUMO

TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress-responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/ß-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with ß-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio. Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis.


Assuntos
Fibroblastos/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Transglutaminases/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Transcrição Gênica , Transcriptoma , Transglutaminases/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Biol Chem ; 400(2): 125-140, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29908126

RESUMO

The maintenance of protein homeostasis (proteostasis) is a fundamental aspect of cell physiology that is essential for the survival of organisms under a variety of environmental and/or intracellular stress conditions. Acute and/or persistent stress exceeding the capacity of the intracellular homeostatic systems results in protein aggregation and/or damaged organelles that leads to pathological cellular states often resulting in cell death. These events are continuously suppressed by a complex macromolecular machinery that uses different intracellular pathways to maintain the proteome integrity in the various subcellular compartments ensuring a healthy cellular life span. Recent findings have highlighted the role of the multifunctional enzyme type 2 transglutaminase (TG2) as a key player in the regulation of intracellular pathways, such as autophagy/mitophagy, exosomes formation and chaperones function, which form the basis of proteostasis regulation under conditions of cellular stress. Here, we review the role of TG2 in these stress response pathways and how its various enzymatic activities might contributes to the proteostasis control.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteostase , Transglutaminases/metabolismo , Animais , Autofagia , Doença , Exossomos/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Estresse Fisiológico
5.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590033

RESUMO

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transglutaminases/metabolismo , Animais , Cálcio/metabolismo , Retículo Endoplasmático/ultraestrutura , Fibroblastos/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase
6.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752334

RESUMO

Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.


Assuntos
Fibrose Cística/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação ao GTP/genética , Fatores de Transcrição de Choque Térmico/genética , Transglutaminases/genética , Animais , Fibrose Cística/patologia , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Processamento de Proteína Pós-Traducional/genética , Proteostase/genética , Transdução de Sinais
7.
Biochim Biophys Acta ; 1863(8): 2084-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169926

RESUMO

Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Exossomos/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Leupeptinas/farmacologia , Transporte Proteico/fisiologia , Estresse Fisiológico/fisiologia , Transglutaminases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fibroblastos , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Camundongos , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Mapeamento de Interação de Proteínas , Fatores de Transcrição/metabolismo , Transglutaminases/deficiência , Transglutaminases/genética , Repetições de Trinucleotídeos
8.
Oncotarget ; 6(42): 44941-54, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26702927

RESUMO

Autophagy is a self-degradative physiological process by which the cell removes worn-out or damaged components. Constant at basal level it may become highly active in response to cellular stress. The type 2 transglutaminase (TG2), which accumulates under stressful cell conditions, plays an important role in the regulation of autophagy and cells lacking this enzyme display impaired autophagy/mitophagy and a consequent shift their metabolism to glycolysis. To further define the molecular partners of TG2 involved in these cellular processes, we analysed the TG2 interactome under normal and starved conditions discovering that TG2 interacts with various proteins belonging to different functional categories. Herein we show that TG2 interacts with pyruvate kinase M2 (PKM2), a rate limiting enzyme of glycolysis which is responsible for maintaining a glycolytic phenotype in malignant cells and displays non metabolic functions, including transcriptional co-activation and protein kinase activity. Interestingly, the ablation of PKM2 led to the decrease of intracellular TG2's transamidating activity paralleled by an increase of its tyrosine phosphorylation. Along with this, a significant decrease of ULK1 and Beclin1 was also recorded, thus suggesting a block in the upstream regulation of autophagosome formation. These data suggest that the PKM2/TG2 interplay plays an important role in the regulation of autophagy in particular under cellular stressful conditions such as those displayed by cancer cells.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Fibrossarcoma/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Transglutaminases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteína Beclina-1 , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Fibrossarcoma/patologia , Proteínas de Ligação ao GTP/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Fosforilação , Proteína 2 Glutamina gama-Glutamiltransferase , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Hormônios Tireóideos/genética , Transfecção , Transglutaminases/genética , Tirosina , Proteínas de Ligação a Hormônio da Tireoide
9.
Mitochondrion ; 19 Pt A: 97-104, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25262960

RESUMO

Mitochondria produce the bulk of cellular energy and work as decisional "hubs" for cellular responses by integrating different input signals. The determinant in the physiopathology of mammals, they attract major attention, nowadays, for their contribution to brain degeneration. How they can withstand or succumb to insults leading to neuronal death is an object of great attention increasing the need for a better understanding of the interplay between inner and outer mitochondrial pathways residing in the cytosol. Of the latter, those dictating protein metabolism and therefore influencing the quality function and control of the organelle are of our most immediate interest and here we describe the Transglutaminase type 2 (TG2) contribution to mitochondrial function, dysfunction and neurodegeneration. Besides reviewing the latest evidences we share also the novel ones on the IF1 pathway depicting a molecular conduit governing mitochondrial turnover and homeostasis relevant to envisaging preventive and therapeutic strategies to respectively predict and counteract deficiencies associated with deregulated mitochondrial function in neuropathology.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Transglutaminases/metabolismo , Metabolismo Energético , Proteínas de Ligação ao GTP/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Doença de Huntington/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética
10.
Cell Tissue Res ; 358(3): 793-805, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25209703

RESUMO

Transglutaminase type II (TG2) is a pleiotropic enzyme that exhibits various activities unrelated to its originally identified functions. Apart from post-translational modifications of proteins (peculiar to the transglutaminase family enzymes), TG2 is involved in diverse biological functions, including cell death, signaling, cytoskeleton rearrangements, displaying enzymatic activities, G-protein and non-enzymatic biological functions. It is involved in a variety of human diseases such as celiac disease, diabetes, neurodegenerative diseases, inflammatory disorders and cancer. Regulatory mechanisms might exist through which cells control multifunctional protein expression as a function of their sub-cellular localization. The definition of the tissue and cellular distribution of such proteins is important for the determination of their function(s). We investigate the sub-cellular localization of TG2 by confocal and immunoelectron microscopy techniques in order to gain an understanding of its properties. The culture conditions of human sarcoma cells (2fTGH cells), human embryonic kidney cells (HEK293(TG)) and human neuroblastoma cells (SK-n-BE(2)) are modulated to induce various stimuli. Human tissue samples of myocardium and gut mucosa (diseased and healthy) are also analyzed. Immuno-gold labeling indicates that TG2 is localized in the nucleus, mitochondria and endoplasmic reticulum under physiological conditions but that this is not a stable association, since different locations or different amounts of TG2 can be observed depending on stress stimuli or the state of activity of the cell. We describe a possible unrecognized location of TG2. Our findings thus provide useful insights regarding the functions and regulation of this pleiotropic enzyme.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Espaço Intracelular/enzimologia , Transglutaminases/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Doxorrubicina/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Espaço Intracelular/efeitos dos fármacos , Modelos Biológicos , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Neuroblastoma/patologia , Neuroblastoma/ultraestrutura , Proteína 2 Glutamina gama-Glutamiltransferase , Transporte Proteico/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Transglutaminases/ultraestrutura
11.
Mol Cell Oncol ; 1(4): e968506, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27308365

RESUMO

Macroautophagy selectively degrades dysfunctional mitochondria by a process known as mitophagy. The purpose of the study published in Cell Death and Differentiation was to investigate the involvement of transglutaminase 2 (TG2) in the turnover and degradation of damaged mitochondria and its effects on cell metabolism.

12.
Amino Acids ; 42(5): 1793-802, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21479826

RESUMO

Tissue transglutaminase (TG2) activity has been implicated in inflammatory disease processes such as Celiac disease, infectious diseases, cancer, and neurodegenerative diseases, such as Huntington's disease. Furthermore, four distinct biochemical activities have been described for TG2 including protein crosslinking via transamidation, GTPase, kinase and protein disulfide isomerase activities. Although the enzyme plays a complex role in the regulation of cell death and autophagy, the molecular mechanisms and the putative biochemical activity involved in each is unclear. Therefore, the goal of the present study was to determine how TG2 modulates autophagy and/or apoptosis and which of its biochemical activities is involved in those processes. To address this question, immortalized embryonic fibroblasts obtained from TG2 knock-out mice were reconstituted with either wild-type TG2 or TG2 lacking its transamidating activity and these were subjected to different treatments to induce autophagy or apoptosis. We found that knock out of the endogenous TG2 resulted in a significant exacerbation of caspase 3 activity and PARP cleavage in MEF cells subjected to apoptotic stimuli. Interestingly, the same cells showed the accumulation of LC3 II isoform following autophagy induction. These findings strongly suggest that TG2 transamidating activity plays a protective role in the response of MEF cells to death stimuli, because the expression of the wild-type TG2, but not its transamidation inactive C277S mutant, resulted in a suppression of caspase 3 as well as PARP cleavage upon apoptosis induction. Additionally, the same mutant was unable to catalyze the final steps in autophagosome formation during autophagy. Our findings clearly indicate that the TG2 transamidating activity is the primary biochemical function involved in the physiological regulation of both apoptosis and autophagy. These data also indicate that TG2 is a key regulator of cross-talk between autophagy and apoptosis.


Assuntos
Apoptose , Autofagia , Transglutaminases/genética , Transglutaminases/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Caspase 3/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Transfecção
13.
Biochem J ; 440(2): 175-83, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21834791

RESUMO

Acquired drug resistance was found to be suppressed in the doxorubicin-resistant breast cancer cell line MCF7/Dx after pre-treatment with GSNO (nitrosoglutathione). The effect was accompanied by enhanced protein glutathionylation and accumulation of doxorubicin in the nucleus. Among the glutathionylated proteins, we identified three members of the histone family; this is, to our knowledge, the first time that histone glutathionylation has been reported. Formation of the potential NO donor dinitrosyl-diglutathionyl-iron complex, bound to GSTP1-1 (glutathione transferase P1-1), was observed in both MCF7/Dx cells and drug-sensitive MCF7 cells to a similar extent. In contrast, histone glutathionylation was found to be markedly increased in the resistant MCF7/Dx cells, which also showed a 14-fold higher amount of GSTP1-1 and increased glutathione concentration compared with MCF7 cells. These results suggest that the increased cytotoxic effect of combined doxorubicin and GSNO treatment involves the glutathionylation of histones through a mechanism that requires high glutathione levels and increased expression of GSTP1-1. Owing to the critical role of histones in the regulation of gene expression, the implication of this finding may go beyond the phenomenon of doxorubicin resistance.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutationa/metabolismo , Histonas/metabolismo , Óxido Nítrico/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/metabolismo , Feminino , Glutationa S-Transferase pi/metabolismo , Humanos , S-Nitrosoglutationa/farmacologia
15.
Autophagy ; 5(8): 1145-54, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19955852

RESUMO

Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g. nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. "Tissue" transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria.


Assuntos
Autofagia , Proteínas de Ligação ao GTP/metabolismo , Fagossomos/enzimologia , Transglutaminases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/ultraestrutura , Citometria de Fluxo , Imunofluorescência , Proteínas de Ligação ao GTP/deficiência , Técnicas de Inativação de Genes , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Fusão de Membrana/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio/citologia , Miocárdio/ultraestrutura , Proteína 2 Glutamina gama-Glutamiltransferase , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Coloração e Rotulagem , Transglutaminases/deficiência
16.
J Immunol ; 180(4): 2616-24, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18250473

RESUMO

The pathogenesis of sepsis is characterized by the inability of the host to regulate the inflammatory response, and as a consequence, dysregulated inflammatory processes induce organ dysfunctions and death. Altered transglutaminase type II (TG2) expression is associated with the development of many inflammatory diseases. Therefore, in this study, we questioned whether TG2 could also contribute to the pathological inflammatory dysregulation occurring in septic shock in vivo. To this aim, we used as an experimental model the TG2 knockout mice, in which the process of septic shock was elicited by treatment with LPS. Interestingly, our results demonstrated that TG2 ablation leads to partial resistance to experimental sepsis. The increased survival of TG2(-/-) mice was reflected in a drastic reduction of organ injury, highlighted by a limited infiltration of neutrophils in kidney and peritoneum and by a better homeostasis of the proinflammatory mediators as well as mitochondrial function. We also showed that in wild-type mice, the TG2 expression is increased during endotoxemia and, being directly involved in the mechanisms of NF-kappaB activation, it may cause a continuous activation cycle in the inflammatory process, thus contributing to development of sepsis pathogenesis. We propose that the inhibition of TG2 could represent a novel approach in the treatment of inflammatory processes associated with sepsis.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Choque Séptico/enzimologia , Choque Séptico/etiologia , Transglutaminases/fisiologia , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/patologia , Animais , Endotoxemia/enzimologia , Endotoxemia/etiologia , Endotoxemia/mortalidade , Endotoxemia/patologia , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/mortalidade , Infecções por Escherichia coli/patologia , Feminino , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/enzimologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Proteína 2 Glutamina gama-Glutamiltransferase , Choque Séptico/mortalidade , Choque Séptico/patologia , Análise de Sobrevida , Transglutaminases/biossíntese , Transglutaminases/deficiência , Transglutaminases/genética
17.
Curr Pharm Des ; 14(3): 278-88, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18220838

RESUMO

"Tissue" or type 2 Transglutaminase (TG2) is a peculiar multifunctional enzyme able to catalyse Ca(2+)-dependent post-translational modification of proteins, by establishing covalent bonds between peptide-bound glutamine residues and either lysine residues or mono- and poly-amines. In addition, it may act also as a G protein in transmembrane signalling, as a kinase, as a protein disulphide isomerase and as a cell surface adhesion mediator. The vast array of biochemical functions exerted by TG2 characterises and distinguishes it from all the other members of the transglutaminase family. Multiple lines of evidence suggest an involvement of the enzyme in neurodegenerative diseases, such as Huntington's (HD) and Parkinson (PD), and that its inhibition, either via drug treatments or genetic approaches, might be beneficial for the treatment of these syndromes. This review will exploit the recent developments in the comprehension of the role played by type 2 transglutaminase in eukaryotic cells, focusing on the role exerted by TG2 on mitochondrial physiology and on the regulation of cell death pathways at the basis of neurodegenerative diseases.


Assuntos
Células Eucarióticas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Doenças Neurodegenerativas/enzimologia , Transglutaminases/metabolismo , Animais , Autofagia/fisiologia , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Sistemas de Liberação de Medicamentos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Proteína 2 Glutamina gama-Glutamiltransferase
18.
Autophagy ; 3(1): 75-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17172802

RESUMO

Several lines of evidence have demonstrated that self-cannibalism (macroautophagy) is a well regulated process of cell repair as well as of molecule and organelle recycling that allows the cells to survive. However, autophagic activity also represents a cell death pathway characterized by specific features that differentiate autophagy from other cell death processes. We found that cells that are able to exert intense autophagic activity were also able to engulf and digest entire cell siblings. This phenomenon represents a sort of xeno-cannibalism. We wonder whether these two phenomena, self and xeno-cannibalism, could be related the latter being an exacerbation of the first and providing a further survival option to the cells.


Assuntos
Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Autofagia/genética , Humanos , Modelos Biológicos
19.
J Neurochem ; 100(1): 36-49, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17064362

RESUMO

Transglutaminase 2 (TG2) represents the most ubiquitous isoform belonging to the TG family, and has been implicated in the pathophysiology of basal ganglia disorders, such as Parkinson's disease and Huntington's disease. We show that ablation of TG2 in knockout mice causes a reduced activity of mitochondrial complex I associated with an increased activity of complex II in the whole forebrain and striatum. Interestingly, TG2-/- mice were protected against nigrostriatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is converted in vivo into the mitochondrial complex I inhibitor, 1-methyl-4-phenyl-pyridinium ion. In contrast, TG2-/- mice were more vulnerable to nigrostriatal damage induced by methamphetamine or by the complex II inhibitor, 3-nitropropionic acid. Proteomic analysis showed that proteins involved in the mitochondrial respiratory chain, such as prohibitin and the beta-chain of ATP synthase, are substrates for TG2. These data suggest that TG2 is involved in the regulation of the respiratory chain both in physiology and pathology, contributing to set the threshold for neuronal damage in extrapyramidal disorders.


Assuntos
Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Ligação ao GTP/deficiência , Doenças Mitocondriais/patologia , Neurônios/patologia , Transglutaminases/deficiência , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Monoaminas Biogênicas/metabolismo , Western Blotting/métodos , Peso Corporal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Complexo II de Transporte de Elétrons/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/etiologia , Piperazinas/farmacocinética , Proteína 2 Glutamina gama-Glutamiltransferase , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Biochim Biophys Acta ; 1757(9-10): 1357-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16979579

RESUMO

In this study we provide the first in vivo evidences showing that, under physiological conditions, "tissue" transglutaminase (TG2) might acts as a protein disulphide isomerase (PDI) and through this activity contributes to the correct assembly of the respiratory chain complexes. Mice lacking TG2 exhibit mitochondrial energy production impairment, evidenced by decreased ATP levels after physical challenge. This defect is phenotypically reflected in a dramatic decrease of motor behaviour of the animals. We propose that the molecular mechanism, underlying such a phenotype, resides in a defective disulphide bonds formation in ATP synthase (complex V), NADH-ubiquinone oxidoreductase (complex I), succinate-ubiquinone oxidoreductase (complex II) and cytochrome c oxidase (complex IV). In addition, TG2-PDI might control the respiratory chain by modulating the formation of the prohibitin complexes. These data elucidate a new pathway that directly links the TG2-PDI enzymatic activity with the regulation of mitochondrial respiratory chain function.


Assuntos
Dissulfetos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Mitocondriais/metabolismo , Transglutaminases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Reagentes de Ligações Cruzadas/metabolismo , Transporte de Elétrons/fisiologia , Eletroforese em Gel de Poliacrilamida , Proteínas de Ligação ao GTP/deficiência , Camundongos , Camundongos Knockout , Proibitinas , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Subunidades Proteicas/metabolismo , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Transglutaminases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...