Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 343(6169): 1248097, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24458648

RESUMO

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Água , Bactérias , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Silicatos/análise , Silicatos/química , Astronave , Sulfatos/química
2.
Science ; 336(6081): 570-6, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556248

RESUMO

The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.


Assuntos
Marte , Água , Sulfato de Cálcio , Meio Ambiente Extraterreno , Fenômenos Geológicos , Meteoroides , Silicatos , Astronave , Zinco
3.
Science ; 324(5930): 1058-61, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19461001

RESUMO

The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.


Assuntos
Marte , Meio Ambiente Extraterreno , Compostos Férricos , Astronave , Água
4.
Science ; 316(5825): 738-42, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17478719

RESUMO

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

5.
Science ; 313(5792): 1403-7, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16959999

RESUMO

The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling approximately 8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict "hopper crystals" that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.


Assuntos
Marte , Ácidos , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Sulfatos , Tempo , Água
6.
Nature ; 443(7107): E1-2; discussion E2, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957684

RESUMO

The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.

7.
Science ; 306(5702): 1698-703, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576602

RESUMO

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Assuntos
Marte , Atmosfera , Evolução Planetária , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Água , Vento
8.
Science ; 306(5702): 1703-9, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576603

RESUMO

Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.


Assuntos
Marte , Atmosfera , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Gelo , Silicatos , Astronave , Análise Espectral , Água
9.
Science ; 306(5702): 1709-14, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576604

RESUMO

Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.


Assuntos
Marte , Água , Exobiologia , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Vida , Minerais , Silicatos , Astronave , Análise Espectral , Sulfatos , Enxofre
10.
Science ; 306(5702): 1723-6, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576606

RESUMO

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.


Assuntos
Marte , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Análise Espectral , Água
11.
Science ; 306(5702): 1727-30, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15576607

RESUMO

The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.


Assuntos
Marte , Água , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave
12.
Science ; 305(5685): 794-9, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15297657

RESUMO

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.


Assuntos
Marte , Atmosfera , Meio Ambiente Extraterreno , Sedimentos Geológicos , Fenômenos Geológicos , Geologia , Magnetismo , Minerais , Água , Vento
13.
Science ; 305(5685): 800-6, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15297658

RESUMO

Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.


Assuntos
Marte , Atmosfera , Evolução Planetária , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Compostos de Ferro , Minerais , Silicatos , Sistema Solar , Análise Espectral , Água
15.
Science ; 241(4864): 478-9, 1988 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-17792615
16.
Science ; 224(4656): 1421-2, 1984 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17793376
17.
Science ; 219(4584): 491, 1983 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-17742824
18.
Science ; 212(4497): 911-2, 1981 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17830185
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...