Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2319937121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696469

RESUMO

Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.


Assuntos
Bactérias , Oceanos e Mares , Água do Mar , Água do Mar/microbiologia , Água do Mar/química , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Clorofila/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Estações do Ano , Biomassa , Microbiota/fisiologia , Oxigênio/metabolismo
2.
Clim Dyn ; 59(9-10): 2887-2913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196258

RESUMO

High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere-ocean model simulations, an assimilative coupled atmosphere-ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514-12522, 2018. 10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2-100 days) that are still relatively "high-frequency" in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the "drizzle effect", in which precipitation is not temporally intermittent to the extent found in observations.

3.
Geophys Res Lett ; 49(2): e2021GL095920, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860604

RESUMO

The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.

4.
J Geophys Res Oceans ; 124(8): 5723-5746, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31763113

RESUMO

Estimates of the kinetic energy transfer from the wind to the ocean are often limited by the spatial and temporal resolution of surface currents and surface winds. Here we examine the wind work in a pair of global, very high-resolution (1/48° and 1/24°) MIT general circulation model simulations in Latitude-Longitude-polar Cap (LLC) configuration that provide hourly output at spatial resolutions of a few kilometers and include tidal forcing. A cospectrum analysis of wind stress and ocean surface currents shows positive contribution at large scales (>300 km) and near-inertial frequency and negative contribution from mesoscales, tidal frequencies, and internal gravity waves. Larger surface kinetic energy fluxes are in the Kuroshio in winter at large scales (40 mW/m2) and mesoscales (-30 mW/m2). The Kerguelen region is dominated by large scale (∼20 mW/m2), followed by inertial oscillations in summer (13 mW/m2) and mesoscale in winter (-12 mW/m2). Kinetic energy fluxes from internal gravity waves (-0.1 to -9.9 mW/m2) are generally stronger in summer. Surface kinetic energy fluxes in the LLC simulations are 4.71 TW, which is 25-85% higher than previous global estimates from coarser (1/6-1/10°) general ocean circulation models; this is likely due to improved representation of wind variability (6-hourly, 0.14°, operational European Center for Medium-Range Weather Forecasts). However, the low wind power input to the near-inertial frequency band obtained with LLC (0.16 TW) compared to global slab models suggests that wind variability on time scales less than 6 hr and spatial scales less than 15 km are critical to better representing the wind power input in ocean circulation models.

5.
Oceanography (Wash D C) ; 32(2): 30-39, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33149539

RESUMO

The tropical Eastern Pacific Fresh Pool (EPFP) has some of the highest precipitation rates and lowest sea surface salinities found in the open ocean. In addition, the sea surface salinity in the EPFP exhibits one of the strongest annual cycles in the world ocean. The region is strongly affected by the meridionally migrating Intertropical Convergence Zone and is also influenced by large-scale ocean currents and wind-driven Ekman currents. Recognizing the complexity of competing regional influences and the importance of sea surface salinity as an integrator of freshwater forcing, the Salinity Processes Upper-ocean Regional Study (SPURS) was undertaken to better understand how ocean processes and surface freshwater fluxes set surface salinity. Instrumentation on a surface mooring, deployed for 14 months near the western edge of the EPFP, allowed estimation of the surface fluxes of momentum, heat, and freshwater. Subsurface instrumentation on the mooring provided upper-ocean vertical structure and horizontal currents. These observations, along with horizontal gradients of surface salinity from the Soil Moisture Active Passive (SMAP) satellite instrument, were used to estimate the surface-layer salinity budget at the western edge of the EPFP. While the low salinity associated with the presence of the EPFP at the mooring site was sustained by heavy rainfall, it was found that seasonal variability in large-scale currents was important to controlling the transition between the "salty" and "fresh" seasons. Ekman advection was important to prolonging local high salinity as rainfall decreased. Although illuminating some key processes, the temporal variability of the surface-layer salinity budget also shows significant complexity, with processes such as surface freshwater fluxes and vertical mixing making notable contributions. The surface flux term and the terms involving mixing across the base of the surface layer oppose and nearly cancel each other throughout the deployment, such that the horizontal advection term effectively accounts for most of the variability in surface salinity at the site on monthly to seasonal timescales. Further investigation, taking advantage of additional observations during SPURS-2, will be needed to more thoroughly examine the relevant physical processes.

6.
J Geophys Res Atmos ; 124(24): 13803-13825, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-32140374

RESUMO

Unique in situ observations of atmospheric conditions over the Red Sea and the coastal Arabian Peninsula are examined to study the dynamics and regional impacts of the local land-sea breeze cycle (LSBC). During a 26-month data record spanning 2008-2011, observed LSBC events occurred year-round, frequently exhibiting cross-shore wind velocities in excess of 8 m/s. Observed onshore and offshore features of both the land- and sea-breeze phases of the cycle are presented, and their seasonal modulation is considered. Weather Research and Forecasting climate downscaling simulations and satellite measurements are used to extend the analysis. In the model, the amplitude of the LSBC is significantly larger in the vicinity of the steeper terrain elements encircling the basin, suggesting an enhancement by the associated slope winds. Observed and simulated conditions also reflected distinct gravity-current characteristics of the intrinsic moist marine air mass during both phases of the LSBC. Specifically, the advance and retreat of marine air mass was directly tied to the development of internal boundary layers onshore and offshore throughout the period of study. Convergence in the lateral moisture flux resulting from this air mass ascending the coastal topography (sea-breeze phase) as well as colliding with air masses from the opposing coastline (land-breeze phase) further resulted in cumulous cloud formation and precipitation.

7.
Oceanography (Wash D C) ; 30(2): 38-48, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35095239

RESUMO

The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...