Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(2): 485-491, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389892

RESUMO

We report a new class of carboplatin-TFO hybrid that incorporates a bifunctional alkyne-amine nucleobase monomer called AP-C3-dT that enables dual 'click' platinum(ii) drug conjugation and thiazole orange fluorophore coupling. Thiazole orange enhances the binding of Pt(ii)-TFO hybrids and provides an intrinsic method for monitoring triplex formation. These hybrid constructs possess increased stabilisation and crosslinking properties in comparison to earlier Pt(ii)-TFOs, and demonstrate sequence-specific binding at neutral pH.

2.
J Inorg Biochem ; 252: 112475, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199050

RESUMO

Utilizing isoquinoline as a carrier ligand, we have evaluated the reactivity of selected trans­platinum planar amine (TPA) carboxylate compounds by varying the leaving carboxylate group (acetate, hydroxyacetate, and lactate) in an effort to optimize the cytotoxic and metabolic efficiency. To measure the pharmacological properties of these compounds, a combination of systematic biophysical and biological studies were carried out mainly involving substitution reaction with NAM (N-acetyl-methionine), effects on DNA structural perturbation, cytotoxicity, cellular accumulation, metabolic stability, and cell cycle effects. TPA compounds showed minimal losses in cytotoxic efficacy and outperformed cisplatin after pre-incubation with serum, while displaying a distinct micromolar cytotoxic activity with minimal DNA binding and unaltered cell cycle. Monitoring the TPA compounds with NAM suggests the following trend for the reactivity: hydroxyacetate > lactate > acetate. The same trend was seen for the cytotoxicity in tumor cells and DNA binding, while the rate of drug inactivation/protein binding in cells was not significantly different among these leaving groups. Thus, our results show superior cellular efficacy of TPA compounds and distinct micromolar cytotoxic activities different than cisplatin. Moreover, we found the TPA compounds had prolonged survival and decreased tumor burden compared to the control mice in a relevant human ovarian cancer mouse model with A2780 cells expressing luciferase. Therefore, we propose that further optimization of the basic TPA structure can give further enhanced in vivo activity and may eventually be translated into the development of clinically relevant non-traditional platinum drugs.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , Platina/farmacologia , Platina/química , Cisplatino/farmacologia , Cisplatino/química , Linhagem Celular Tumoral , Compostos Organoplatínicos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Acetatos , Lactatos , Glicolatos , Ensaios de Seleção de Medicamentos Antitumorais
3.
ACS Med Chem Lett ; 14(9): 1224-1230, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736178

RESUMO

Heparan sulfate proteoglycans (HSPGs) and their associated proteins aid in tumor progression through modulation of biological events such as cell invasion, angiogenesis, metastasis, and immunological responses. Metalloshielding of the anionic heparan sulfate (HS) chains by cationic polynuclear platinum complexes (PPCs) prevents the HS from interacting with HS-associated proteins and thus diminishes the critical functions of HSPG. Studies herein exploring the PPC-HS interactions demonstrated that a series of PPCs varying in charge, nuclearity, distance between Pt centers, and hydrogen-bonding ability influence HS affinity. We report that the polyamine-linked complexes have high HS affinity and display excellent in vivo activity against breast cancer metastases and those arising in the bone and liver compared to carboplatin. Overall, the PPC-HS niche offers an attractive approach for targeting HSPG-expressing tumor cells.

4.
Inorg Chem ; 62(33): 13212-13220, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37552525

RESUMO

In this study, we have used [1H, 15N] NMR spectroscopy to investigate the interactions of the trinuclear platinum anticancer drug triplatin (1) (1,0,1/t,t,t or BBR3464) with site-specific sulfated and carboxylated disaccharides. Specifically, the disaccharides GlcNS(6S)-GlcA (I) and GlcNS(6S)-IdoA(2S) (II) are useful models of longer-chain glycosaminoglycans (GAGs) such as heparan sulfate (HS). For both the reactions of 15N-1 with I and II, equilibrium conditions were achieved more slowly (65 h) compared to the reaction with the monosaccharide GlcNS(6S) (9 h). The data suggest both carboxylate and sulfate binding of disaccharide I to the Pt with the sulfato species accounting for <1% of the total species at equilibrium. The rate constant for sulfate displacement of the aqua ligand (kL2) is 4 times higher than the analogous rate constant for carboxylate displacement (kL1). There are marked differences in the equilibrium concentrations of the chlorido, aqua, and carboxy-bound species for reactions with the two disaccharides, notably a significantly higher concentration of carboxylate-bound species for II, where sulfate-bound species were barely detectable. The trend mirrors that reported for the corresponding dinuclear platinum complex 1,1/t,t, where the rate constant for sulfate displacement of the aqua ligand was 3 times higher than that for acetate. Also similar to what we observed for the reactions of 1,1/t,t with the simple anions, aquation of the sulfato group is rapid, and the rate constant k-L2 is 3 orders of magnitude higher than that for displacement of the carboxylate (k-L1). Molecular dynamics calculations suggest that extra hydrogen-bonding interactions with the more sulfated disaccharide II may prevent or diminish sulfate binding of the triplatin moiety. The overall results suggest that Pt-O donor interactions should be considered in any full description of platinum complex cellular chemistry.


Assuntos
Heparitina Sulfato , Platina , Ligantes , Heparitina Sulfato/química , Dissacarídeos/química , Sulfatos/química
5.
J Inorg Biochem ; 245: 112254, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182504

RESUMO

The biological activity of the 6+ Co containing Werner's Complex has been described and mechanistic considerations suggest that the highly anionic glycosaminoglycans (heparan sulfate, HS, GAGs) are implicated in this activity [Paiva et al. 2021]. To examine in detail the molecular basis of Werner's Complex biological properties we have examined a selection of simple mononuclear Co3+ compounds for their interactions with HS and Fondaparinux (FPX). FPX is a highly sulfated synthetic pentasaccharide used as a model HS substrate [Mangrum et al. 2014, Peterson et al. 2017]. The Co complexes were chosen to be formally substitution-inert and/or have the potential for covalent binding to the biomolecule. Using both indirect competitive inhibition assays and direct mass spectrometric assays, formally substitution-inert complexes bound to FPX with protection from multiple sulfate loss in the gas phase through metalloshielding. Covalent binding of Co-Cl complexes as in [CoCl(NH3)5]2+ and cis-[CoCl2(en)2]+ was confirmed by mass spectrometry. Interestingly, the former complex was shown to be an effective inhibitor of bacterial heparinase enzyme activity and to inhibit heparanase-dependent cellular invasion through the extracellular matrix (ECM). Pursuing the theme of metalloglycomics, we have observed the hitherto unappreciated biological activity of the simple [CoCl(NH3)5]2+ compound, a staple of most inorganic chemistry lab curricula.


Assuntos
Cobalto , Glicosaminoglicanos , Cobalto/metabolismo , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia , Matriz Extracelular/metabolismo , Fondaparinux
6.
Front Oncol ; 12: 913656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106109

RESUMO

Despite recent advances in radiotherapeutic strategies, acquired resistance remains a major obstacle, leading to tumor recurrence for many patients. Once thought to be a strictly cancer cell intrinsic property, it is becoming increasingly clear that treatment-resistance is driven in part by complex interactions between cancer cells and non-transformed cells of the tumor microenvironment. Herein, we report that radiotherapy induces the production of extracellular vesicles by breast cancer cells capable of stimulating tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer stem-like cell expansion. This pro-tumor activity was associated with fibroblast production of the paracrine signaling factor IL-6 and was dependent on the expression of the heparan sulfate proteoglycan CD44v3 on the vesicle surface. Enzymatic removal or pharmaceutical inhibition of its heparan sulfate side chains disrupted this tumor-fibroblast crosstalk. Additionally, we show that the radiation-induced production of CD44v3+ vesicles is effectively silenced by blocking the ESCRT pathway using a soluble pharmacological inhibitor of MDA-9/Syntenin/SDCBP PDZ1 domain activity, PDZ1i. This population of vesicles was also detected in the sera of human patients undergoing radiotherapy, therefore representing a potential biomarker for radiation therapy and providing an opportunity for clinical intervention to improve treatment outcomes.

7.
ACS Nano ; 16(6): 8954-8966, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640255

RESUMO

Viruslike particles (VLPs) fabricated using wireframe DNA origami are emerging as promising vaccine and gene therapeutic delivery platforms due to their programmable nature that offers independent control over their size and shape, as well as their site-specific functionalization. As materials that biodegrade in the presence of endonucleases, specifically DNase I and II, their utility for the targeting of cells, tissues, and organs depends on their stability in vivo. Here, we explore minor groove binders (MGBs) as specific endonuclease inhibitors to control the degradation half-life of wireframe DNA origami. Bare, unprotected DNA-VLPs composed of two-helix edges were found to be stable in fetal bovine serum under typical cell culture conditions and in human serum for 24 h but degraded within 3 h in mouse serum, suggesting species-specific endonuclease activity. Inhibiting endonucleases by incubating DNA-VLPs with diamidine-class MGBs increased their half-lives in mouse serum by more than 12 h, corroborated by protection against isolated DNase I and II. Our stabilization strategy was compatible with the functionalization of DNA-VLPs with HIV antigens, did not interfere with B-cell signaling activity of DNA-VLPs in vitro, and was nontoxic to B-cell lines. It was further found to be compatible with multiple wireframe DNA origami geometries and edge architectures. MGB protection is complementary to existing methods such as PEGylation and chemical cross-linking, offering a facile protocol to control DNase-mediated degradation rates for in vitro and possibly in vivo therapeutic and vaccine applications.


Assuntos
Nanoestruturas , Camundongos , Humanos , Animais , Conformação de Ácido Nucleico , DNA , Endonucleases , Desoxirribonuclease I
8.
J Inorg Biochem ; 232: 111811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367819

RESUMO

An impressive class of formally substitution-inert polynuclear platinum complexes known as Substitution-inert Polynuclear Platinum (II) Complexes (SI-PPCs) present an attractive approach for medicinal inorganic chemistry through high-affinity non-covalent interactions with biomolecules, such as DNA and Glycosaminoglycans (GAGs). This interaction occurs through the formation of non-covalent cyclic structures called clamps and forks with the phosphate and sulfate groups present in these biomolecules. This work shows several analyses of the non-covalent interactions formed between heparin (PDB code: 1HPN) and SI-PPCs obtained through molecular dynamics (MD) simulations. Root Mean Square Deviation (RMSD) results showed that the "non-covalent" di-nuclear platinum compound, DiplatinNC ([{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-µ-NH2(CH2)6NH2]6+) and AH44 ([{Pt(NH3)3}2{(µ-(H2N(CH2)6NH2)2-(trans-Pt(NH3)2}]6+, 0,0,0/t,t,t,) complexes, which are both 6+ charged complexes, were the most rigid. On the other hand, the Root Mean Square Fluctuation (RMSF) showed that there is a reduction in the atomic fluctuation of atoms in the central region of the heparin molecule; the solvent accessible surface area (SASA) analysis also indicates a reduction in the accessible area by the heparin when interacting with SI-PPCs. The evaluation of H-Bond data confirms the formation of the non-covalent interactions, which may suggest a decrease in the action of 1HPN by preventing the action of enzymes on this substrate. In addition, thermodynamic results indicate that this interaction is spontaneous, considering the negative variations in the Gibbs free energy presented by the studied systems.


Assuntos
Antineoplásicos , Platina , Antineoplásicos/química , Glicosaminoglicanos , Heparina , Simulação de Dinâmica Molecular , Compostos Organoplatínicos/química , Platina/química
9.
J Inorg Biochem ; 229: 111731, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131616

RESUMO

Metal complexes studied to date under the framework of metalloglycomics belong to the M-NH3 general motif (polynuclear platinum compounds; Werner's complex), acting mainly as cationic hydrogen bonding species toward glycosaminoglycans (GAGs), an interaction termed metalloshielding. In this paper, we expand our studies to substitution-inert octahedral cobalt(III) and ruthenium(II) complexes bearing the non­hydrogen-donor ligand 2,2'-bipyridine (bpy). We identified by NMR spectroscopy that [Co(bpy)3]3+ binds to the highly sulfated synthetic pentasaccharide, Fondaparinux (FPX), while no major perturbations are found in the presence of [Ru(bpy)3]2+. This result is of significance as both coordination compounds have analogous 3D structures. Although weakly binding to the model GAG, [Ru(bpy)3]2+ completely inhibits the enzymatic cleavage of FPX by the bacterial heparinase II (HepII) enzyme, which is not observed for the Co(III) analog. This observation suggests a direct inhibition of HepII by the Ru compound, through a mechanism that is unrelated to metalloshielding.


Assuntos
2,2'-Dipiridil/química , Cobalto/química , Complexos de Coordenação/química , Compostos de Rutênio/química , Fondaparinux/química , Glicosaminoglicanos/química , Humanos , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Compostos Organometálicos/química , Polissacarídeo-Liases/química , Rutênio/química
10.
Angew Chem Int Ed Engl ; 61(3): e202110455, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34652881

RESUMO

Limitations of clinical platinum(II) therapeutics include systemic toxicity and inherent resistance. Modern approaches, therefore, seek new ways to deliver active platinum(II) to discrete nucleic acid targets. In the field of antigene therapy, triplex-forming oligonucleotides (TFOs) have attracted interest for their ability to specifically recognise extended duplex DNA targets. Here, we report a click chemistry based approach that combines alkyne-modified TFOs with azide-bearing cis-platinum(II) complexes-based on cisplatin, oxaliplatin, and carboplatin motifs-to generate a library of PtII -TFO hybrids. These constructs can be assembled modularly and enable directed platinum(II) crosslinking to purine nucleobases on the target sequence under the guidance of the TFO. By covalently incorporating modifications of thiazole orange-a known DNA-intercalating fluorophore-into PtII -TFOs constructs, enhanced target binding and discrimination between target and off-target sequences was achieved.


Assuntos
Complexos de Coordenação/química , DNA/química , Oligonucleotídeos/química , Platina/química , Alcinos/química , Química Click
11.
Mol Cancer Ther ; 21(2): 271-281, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815360

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targetable biomarkers. TNBC is known to be most aggressive and when metastatic is often drug-resistant and uncurable. Biomarkers predicting response to therapy improve treatment decisions and allow personalized approaches for patients with TNBC. This study explores sulfated glycosaminoglycan (sGAG) levels as a predictor of TNBC response to platinum therapy. sGAG levels were quantified in three distinct TNBC tumor models, including cell line-derived, patient-derived xenograft (PDX) tumors, and isogenic models deficient in sGAG biosynthesis. The in vivo antitumor efficacy of Triplatin, a sGAG-directed platinum agent, was compared in these models with the clinical platinum agent, carboplatin. We determined that >40% of TNBC PDX tissue microarray samples have high levels of sGAGs. The in vivo accumulation of Triplatin in tumors as well as antitumor efficacy of Triplatin positively correlated with sGAG levels on tumor cells, whereas carboplatin followed the opposite trend. In carboplatin-resistant tumor models expressing high levels of sGAGs, Triplatin decreased primary tumor growth, reduced lung metastases, and inhibited metastatic growth in lungs, liver, and ovaries. sGAG levels served as a predictor of Triplatin sensitivity in TNBC. Triplatin may be particularly beneficial in treating patients with chemotherapy-resistant tumors who have evidence of residual disease after standard neoadjuvant chemotherapy. More effective neoadjuvant and adjuvant treatment will likely improve clinical outcome of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Glicosaminoglicanos/uso terapêutico , Humanos , Medicina de Precisão , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Angew Chem Int Ed Engl ; 60(31): 17123-17130, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34105220

RESUMO

Werner's Complex, as a cationic coordination complex (CCC), has hitherto unappreciated biological properties derived from its binding affinity to highly anionic biomolecules such as glycosaminoglycans (GAGs) and nucleic acids. Competitive inhibitor and spectroscopic assays confirm the high affinity to GAGs heparin, heparan sulfate (HS), and its pentasaccharide mimetic Fondaparinux (FPX). Functional consequences of this affinity include inhibition of FPX cleavage by bacterial heparinase and mammalian heparanase enzymes with inhibition of cellular invasion and migration. Werner's Complex is a very efficient condensing agent for DNA and tRNA. In proof-of-principle for translational implications, it is demonstrated to display antiviral activity against human cytomegalovirus (HCMV) at micromolar concentrations with promising selectivity. Exploitation of non-covalent hydrogen-bonding and electrostatic interactions has motivated the unprecedented discovery of these properties, opening new avenues of research for this iconic compound.


Assuntos
Antivirais/farmacologia , Complexos de Coordenação/farmacologia , Citomegalovirus/efeitos dos fármacos , Fondaparinux/antagonistas & inibidores , Glicosaminoglicanos/farmacologia , Antivirais/química , Complexos de Coordenação/química , Glicosaminoglicanos/química , Humanos , Testes de Sensibilidade Microbiana
13.
Chem Commun (Camb) ; 57(38): 4666-4669, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33977992

RESUMO

We determine that the substitution-inert polynuclear platinum complex (PPC) TriplatinNC is an antiviral agent and protects cells from enterovirus 71 and human metapneumovirus infection. This protection occurs through the formation of adducts with cell-surface glycosaminoglycans. Our detailed mechanistic investigation demonstrates that TriplatinNC blocks viral entry by shielding cells from virus attack, opening new directions for metalloshielding antiviral drug development.


Assuntos
Antivirais/farmacologia , Compostos Organoplatínicos/farmacologia , Infecções por Paramyxoviridae/tratamento farmacológico , Antivirais/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Compostos Organoplatínicos/química
14.
Angew Chem Int Ed Engl ; 60(6): 3283-3289, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174390

RESUMO

1 H NMR spectroscopic studies on the 1:1 adduct of the pentasaccharide Fondaparinux (FPX) and the substitution-inert polynuclear platinum complex TriplatinNC show significant modulation of geometry around the glycosidic linkages of the FPX constituent monosaccharides. FPX is a valid model for the highly sulfated cell signalling molecule heparan sulfate (HS). The conformational ratio of the 1 C4 :2 S0 forms of the FPX residue IdoA(2S) is altered from ca. 35:65 (free FPX) to ca. 75:25 in the adduct; the first demonstration of a small molecule affecting conformational changes on a HS oligosaccharide. Functional consequences of such binding are suggested to be inhibition of HS cleavage in MDA-MB-231 triple-negative breast cancer (TNBC) cells. We further describe inhibition of metastasis by TriplatinNC in the TNBC 4T1 syngeneic tumour model. Our work provides insight into a novel approach for design of platinum drugs (and coordination compounds in general) with intrinsic anti-metastatic potential.


Assuntos
Antineoplásicos/química , Glicosaminoglicanos/química , Ácido Idurônico/química , Compostos Organoplatínicos/química , Platina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Heparitina Sulfato/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia
15.
Antiviral Res ; 184: 104957, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33132195

RESUMO

Human cytomegalovirus (HCMV) infects up to 90-100% of the world population. Although HCMV infection is not a concern for immunocompetent patients, it can be life threatening for immunocompromised individuals. Additionally, congenital HCMV infections can cause serious neurological deficits in neonates. Since viral resistance mutations arise for all current treatments, new treatments targeting novel processes are needed. A well-defined target for HCMV is heparan sulfate, a highly sulfated glycosaminoglycan (GAG) necessary for virion/host cell attachment. In this study, we investigated as possible antiviral agents substitution-inert cationic polynuclear platinum complexes (PPCs) that demonstrate charge-dependent high affinity for GAGs (Katner et al., 2018; Peterson et al., 2017). Certain PPCs had anti-HCMV activities in low micromolar concentrations and antiviral activity correlated with their GAG-binding affinity. Time of addition, removal, and mechanistic studies were consistent with PPCs binding to cells and blocking HCMV virion attachment; however, evidence also suggested that PPC/virion interactions could inhibit fibroblast but not epithelial cell infection. We hypothesize that the PPC-heparan sulfate interaction described here is a general approach to inhibition of virion/host cell attachment and viral entry mediated by other anionic GAGs and sialic acids on the cell surface. Through metalloshielding of the critical sulfate receptors, PPCs offer an attractive alternative to current antiviral compounds, with the potential to target a broad spectrum of viruses that utilize GAGs for attachment and entry.


Assuntos
Citomegalovirus/efeitos dos fármacos , Compostos de Platina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/virologia , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Humanos , Compostos de Platina/química , Proteínas da Matriz Viral/metabolismo , Proteínas Virais , Vírion/efeitos dos fármacos
16.
Inorg Chem ; 59(20): 15135-15143, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32988198

RESUMO

RNA triplexes are significant tertiary structure motifs that are found in many functional RNAs. Hence, small molecules capable of recognition, binding, and stabilization of the triple-helical RNA structures are emerging as attractive potential molecular biology tools and therapeutic agents. Here, we utilize methods of molecular biology and biophysics to study the interactions of a series of antitumor substitution-inert polynuclear platinum complexes (SI-PPCs) with triple-helical RNA structures. We show that SI-PPCs recognize and stabilize RNA triplexes and inhibit reverse transcription preferentially in the RNA template prone to the triplex formation. These so far unexplored properties of SI-PPCs suggest that the targeting of triple-stranded regions in RNA might contribute to the biological effects of SI-PPCs.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , RNA/química , Transcrição Reversa/efeitos dos fármacos , Sequência de Bases , Conformação de Ácido Nucleico , Platina/química
17.
J Inorg Biochem ; 211: 111178, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712380

RESUMO

The clinical efficiency of Pt(II)-based drugs is founded on articulate mechanisms of action. Indeed it depends on a balanced combination of metal ion reactivity towards proteins and nucleic acids. Here we analysed the effect of two trans-platinum planar amines in comparison to cisplatin and transplatin on the DNA processivity by human topoisomerases I and IIα. Each tested metal complex produces DNA adducts with unique geometrical features and, consistently, they exert different effects on the activity of tested enzymes. Moreover, our results highlighted more subtle consequences on the enzymatic activity by the tested metal complexes which derive from a combination of preferential DNA or protein platination. Moreover, we observed that it is not possible to predict the overall output based only on the cis- vs trans- geometry of the tested metal complexes. This variable behaviour reflects the chemical reactivity profile of each single metal complex and can be usefully addressed to describe their different properties in the complex physiological environment.


Assuntos
Cisplatino/química , Adutos de DNA/química , DNA Topoisomerases Tipo I/metabolismo , Compostos Organoplatínicos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/farmacologia , DNA Topoisomerases Tipo I/química , Humanos , Compostos Organoplatínicos/farmacologia , Plasmídeos/química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia
18.
Dalton Trans ; 49(45): 16319-16328, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432260

RESUMO

Gold(i)-phosphine "auranofin-like" compounds have been extensively explored as anticancer agents in the past decade. Although potent cytotoxic agents, the lack of selectivity towards tumorigenic vs. non-tumorigenic cell lines often hinders further application. Here we explore the cytotoxic effects of a series of (R3P)AuL compounds, evaluating both the effect of the basicity and bulkiness of the carrier phosphine (R = Et or Cy), and the leaving group L (Cl-vs. dmap). [Au(dmap)(Et3P)]+ had an IC50 of 0.32 µM against the CEM cell line, with good selectivity in relation to HUVEC. Flow cytometry indicates reduced G1 population and slight accumulation in G2, as opposed to auranofin, which induces a high population of cells with fragmented DNA. Protein expression profile sets [Au(dmap)(Et3P)]+ further apart from auranofin, with proteolytic degradation of caspase-3 and poly(ADP-ribose)-polymerase (PARP), DNA strand-break induced phosphorylation of Chk2 Thr68 and increased p53 ser15 phosphorylation. The cytoxicity and observable biological effects correlate directly with the reactivity trend observed when using the series of gold(i)-phosphine compounds for targeting a model zinc finger, Sp1 ZnF3.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ouro/química , Fosfinas/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Dedos de Zinco , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Fosforilação/efeitos dos fármacos
19.
Dalton Trans ; 49(45): 16193-16203, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32329497

RESUMO

Six new ruthenium(ii) complexes with lapachol (Lap) and lawsone (Law) with the general formula [Ru(L)(P-P)(bipy)]PF6, where L = Lap or Law, P-P = 1,2'-bis(diphenylphosphino)ethane (dppe), 1,4'-bis(diphenylphosphino)butane (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppf) and bipy = 2,2'-bipyridine, were synthesized, fully characterized by elemental analysis, molar conductivity, NMR, cyclic voltammetry, UV-vis, IR spectroscopies and three of them by X-ray crystallography. All six complexes were active against breast (MCF-7 and MDA-MB-231) and prostate (DU-145) cancer cell lines with lower IC50 values than cisplatin. Complex [Ru(Lap)(dppe)(bipy)]PF6 (1a) showed significant selectivity for MDA-MB-231, a model of triple-negative breast cancer (TNBC), as compared to the "normal-like" human breast epithelial cell line, MCF-10A. Complex (1a) inhibited TNBC colony formation and induced loss of cellular adhesion. Furthermore, the complex (1a) induced mitochondrial dysfunction and generation of ROS, as is involved in the apoptotic cell death pathway. Preferential cellular uptake of complex (1a) was observed in MDA-MB-231 cells compared to MCF-10A cells, consistent with the observed selectivity for tumorigenic vs. non-tumorigenic cells. Taken together, these results indicate that ruthenium complexes containing lapachol and lawsone as ligands are promising candidates as chemotherapeutic agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzoquinonas/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rutênio/química , Neoplasias de Mama Triplo Negativas/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo
20.
J Inorg Biochem ; 202: 110858, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689625

RESUMO

We report the migration of platinum ligand unit {Pt(en)}2 (en = ethylenediamine) on a short peptide during collision-induced dissociation fragmentation combined with the characterization of the same species by 2D [1H,15N] HSQC (Heteronuclear Single Quantum Coherence) NMR spectroscopy. The NMR spectrum showed that the cysteine is platinated while the MS/MS (Tandem mass spectrometry) showed the platination at glutamic acid. Our results provide the first experimental evidence of platinum migration on peptide during collision-induced dissociation.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Platina/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...