Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 44(7): 600-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25068490

RESUMO

Lipophilic persistent environmental chemicals (LPECs) have the potential to accumulate within a woman's body lipids over the course of many years prior to pregnancy, to partition into human milk, and to transfer to infants upon breastfeeding. As a result of this accumulation and partitioning, a breastfeeding infant's intake of these LPECs may be much greater than his/her mother's average daily exposure. Because the developmental period sets the stage for lifelong health, it is important to be able to accurately assess chemical exposures in early life. In many cases, current human health risk assessment methods do not account for differences between maternal and infant exposures to LPECs or for lifestage-specific effects of exposure to these chemicals. Because of their persistence and accumulation in body lipids and partitioning into breast milk, LPECs present unique challenges for each component of the human health risk assessment process, including hazard identification, dose-response assessment, and exposure assessment. Specific biological modeling approaches are available to support both dose-response and exposure assessment for lactational exposures to LPECs. Yet, lack of data limits the application of these approaches. The goal of this review is to outline the available approaches and to identify key issues that, if addressed, could improve efforts to apply these approaches to risk assessment of lactational exposure to these chemicals.


Assuntos
Poluentes Ambientais/análise , Exposição Materna , Leite Humano/química , Medição de Risco , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Modelos Teóricos , Método de Monte Carlo , Gravidez , Ratos , Projetos de Pesquisa
2.
Toxicol Appl Pharmacol ; 229(2): 135-45, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18433816

RESUMO

The persistent environmental toxicant and immunomodulator, lead (Pb), has been proposed to directly target CD4(+) T cells. However, our studies suggest that CD4(+) T cells are an important functional, yet indirect target. In order to identify the direct target of Pb in the immune system and the potential mechanism of Pb-induced immunotoxicity, myeloid suppressor cells (MSCs) were evaluated for their ability to modulate CD4(+) T cell proliferation after Pb exposure. Myeloid suppressor cells regulate the adaptive immune response, in part, by inhibiting the proliferation of CD4(+) T cells. It is thought that the mechanism of MSC-dependent regulation involves the release of the bioactive gas, nitric oxide (NO), blocking cell signaling cascades downstream of the IL-2 receptor and thus preventing T cells from entering cell-cycle. In mixed lymphocyte culture (MLC), increasing numbers of MSCs suppressed T cell proliferation in a dose-dependent manner, and this suppression is strikingly abrogated with 5 microM lead (Pb) treatment. The Pb-sensitive MSC population is CD11b(+), GR1(+)and CD11c(-) and thus phenotypically consistent with MSCs described in other literature. Inhibition of NO-synthase (NOS), the enzyme responsible for the production of NO, enhanced alloreactive T cell proliferation in MLC. Moreover, Pb attenuated NO production in MLC, and exogenous replacement of NO restored suppression in the presence of Pb. Significantly, MSC from iNOS-/- mice were unable to suppress T cell proliferation. An MSC-derived cell line (MSC-1) also suppressed T cell proliferation in MLC, and Pb disrupted this suppression by attenuating NO production. Additionally, Pb disrupted NO production in MSC-1 cells in response to treatment with interferon-gamma (IFN-gamma) and LPS or in response to concanavalin A-stimulated splenocytes. However, neither the abundance of protein nor levels of mRNA for the inducible isoform of NOS (iNOS) were altered with Pb treatment. Taken together these data suggest that Pb abrogates an MSC-dependent suppression of alloreactive T cell proliferation by inhibiting the function, but not the expression of iNOS.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chumbo/toxicidade , Óxido Nítrico/antagonistas & inibidores , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/citologia , Linhagem Celular , Primers do DNA , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Toxicol Appl Pharmacol ; 207(2): 125-37, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15885731

RESUMO

Although Pb is a well-known immunotoxicant, its mechanism of action is not well understood. Low levels of Pb (approximately 1 microM) markedly enhance the proliferative T cell response in mixed lymphocyte culture (MLC), a process we have termed allo-enhancement. As Pb allo-enhancement occurs whether alloantigen presenting cells (APC) are derived from C57BL/6 or BALB.B10, the allo-reactive T cells involved are likely to be specific for peptide in the context of the IA(b) molecule as the IE molecule is null in H-2(b) mice. Analysis of T cell division in MLC with Pb treatment indicated that there was no significant difference between Pb and non-Pb-treated cultures until day 4 when the frequency of proliferating T cells was much greater than in non-treated cultures. Our data suggest that this increased proliferation is not coupled with increased IL-2 levels in the media as these were actually decreased with Pb treatment and that Pb-induced enhancement in the allo-proliferative response is only partially dependent upon IL-2. Pb allo-enhancement is abrogated when stimulating allo-APCs are paraformaldehyde-fixed, and T cell proliferation stimulated by concanavalin A is not enhanced with Pb treatment, suggesting that the APC is the proximate target of Pb in allo-MLC. Pb allo-enhancement does not occur when T cells respond to irradiated allo-B cells, alone; however, it is restored when syngeneic CD11c-enriched cells are added. Of the CD11c-enriched splenocytes, the fraction that is adherent after 24 h, consistent with macrophages, appears to be the cell type targeted by Pb. Using T cells from DO11.10 transgenic mice, we determined that the effect of Pb is centered around specific p:MHC interactions and that enhanced costimulation is an unlikely mechanism for Pb allo-enhancement.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Isoantígenos/imunologia , Chumbo/toxicidade , Ativação Linfocitária/efeitos dos fármacos , Animais , Células Apresentadoras de Antígenos/fisiologia , Antígeno CD11c/análise , Linfócitos T CD4-Positivos/imunologia , Feminino , Interleucina-2/fisiologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...