Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33794367

RESUMO

Temperature limits the geographic ranges of several tick species. Little is known about the thermal characteristics of these pests outside of a few studies on survival related to thermal tolerance. In this study, thermal tolerance limits, thermal preference, and the impact of temperature on activity levels and metabolic rate were examined in larvae for six species of ixodid ticks. Tolerance of low temperatures ranged from -15 to -24 °C with Dermacentor andersoni surviving the lowest temperatures. High temperature survival ranged from 41 to 47 °C, with Rhipicephalus sanguineus sensu lato having the highest upper lethal limit. Ixodes scapularis showed the lowest survival at both low and high temperatures. Thermal preference temperatures were tested from 0 to 41 °C. The majority of species preferred temperatures between 17 and 22 °C, while Dermacentor variabilis preferred significantly lower temperatures, near 12 °C. Overall activity was measured across a range of temperatures from 10 to 60 °C, and most tick species had the greatest activity near 30 °C. Metabolic rate was the greatest between 30 and 40 °C for all tick species and was relatively stable from 5 to 20 °C. The optimal temperature for tick larvae is likely near the thermal preference for each species, where oxygen consumption is low and activity occurs that will balance questing and conservation of nutrient reserves. In summary, tick species vary greatly in their thermal characteristics, and our results will be critical to predict distribution of these ectoparasites with changing climates.


Assuntos
Temperatura Baixa , Ixodidae/fisiologia , Larva/fisiologia , Consumo de Oxigênio , Animais , Feminino , Geografia , Ninfa , Ovinos , Especificidade da Espécie , Carrapatos , Estados Unidos
2.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171258

RESUMO

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Sequenciamento Completo do Genoma/métodos , Animais , Ecossistema , Transferência Genética Horizontal , Tamanho do Genoma , Heterópteros/classificação , Espécies Introduzidas , Filogenia
3.
Genome Biol ; 20(1): 187, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477173

RESUMO

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Assuntos
Genoma de Inseto , Genômica , Insetos Vetores/genética , Trypanosoma/parasitologia , Moscas Tsé-Tsé/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Genes Ligados ao Cromossomo X , Geografia , Proteínas de Insetos/genética , Masculino , Mutagênese Insercional/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência de Aminoácidos , Sintenia/genética , Wolbachia/genética
4.
Ticks Tick Borne Dis ; 9(1): 25-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29103951

RESUMO

We report that larvae of the winter tick Dermacentor albipictus, the only stage that will quest for a host, can tolerate short-term cold shock down to -25°C and short-term heat shock as high as 46°C. Unlike a three host-tick, larvae of D. albipictus have no preconditioning response to low or high temperature exposure by rapid cold hardening (RCH) or heat hardening, and poor ability to acclimate to low and high temperature extremes. Thermal tolerance limits were not improved as the result of larval clustering, and there was only a minimal effect due to changes in photoperiod. These larvae are freeze intolerant and die at higher temperatures (-5 to -10°C) from contact with ice by inoculative freezing. In absence of cold-associated resistance mechanisms, winter survival requires that larvae procure a host before the first snow cover. Their low and high temperature tolerance, however, is a key survival element that adapts them for off-host periods during summer, which in the arctic could allow for northern expansion.


Assuntos
Cervos , Dermacentor/fisiologia , Termotolerância , Infestações por Carrapato/veterinária , Distribuição Animal , Animais , Temperatura Baixa , Dermacentor/crescimento & desenvolvimento , Comportamento Alimentar , Temperatura Alta , Larva/crescimento & desenvolvimento , Larva/fisiologia , New Hampshire , Infestações por Carrapato/parasitologia
5.
J Insect Physiol ; 101: 39-46, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28648807

RESUMO

Ticks are obligate hematophagous arthropods, but may have to endure extended time (1-2years) between feedings. During these off-host periods, ticks must contend with a multitude of environmental stresses including prolonged or repeated exposure to desiccating conditions. In this study, we measured the energetic consequences of single and repeated bouts of dehydration of American dog ticks, Dermacentor variabilis, and examined the impact of energy reserves on tick survival during dehydration. Recently molted ticks exposed to a single period at 0% relative humidity (RH) for 5d lost ∼26% of their body water and showed 1.3- and 1.7-fold reductions in protein and lipid, respectively. These reduced energy reserves coincided with increased O2 consumption in dehydrated ticks. Exposure to repeated cycles of dehydration (0% RH, 48h) and rehydration (100% RH, 24h) also reduced energy reserves; however, ticks were able to fully recover their body water after 12 cycles of dehydration/rehydration and endured >20 cycles. Starvation of ticks, in the absence of dehydration, for 18 or 36weeks resulted in the loss of ∼20-40% of protein and 60% of lipid reserves. When ticks were exposed to continuous dehydration at 0% RH, their survival after 18weeks of starvation was only minimally impacted; however, individuals starved for 36weeks succumbed to dehydration much more rapidly than recently fed ticks. Both single and repeated dehydration exposures resulted in substantial energetic costs and ticks with limited energy reserves were more susceptible to dehydration-induced mortality, indicating that adequate energy reserves are critical for tolerance to dehydration stress and long-term success of ticks.


Assuntos
Dermacentor/fisiologia , Dessecação , Metabolismo Energético , Privação de Alimentos , Longevidade , Animais , Masculino
6.
Ticks Tick Borne Dis ; 7(6): 1155-1161, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27546608

RESUMO

Understanding how ticks survive the multitude of stresses experienced during winter is integral to predicting population dynamics and transmission of tick-borne pathogens. The American dog tick (Dermacentor variabilis), a predominant vector of Rocky Mountain spotted fever, overwinters in any of its post-egg life stages. In this study, we characterized the cold tolerance of larval D. variabilis and examined the effect of various acclimatory conditions on cold hardiness. Cold-shock survival during 2h exposure to various subzero temperatures was assessed and a lower lethal temperature of -20°C and a 50% mortality temperature near -16°C was established. Larvae exposed to -5°C showed high survival (∼70%) after 14 d and near 50% for up to 56d at -5°C. Larvae cycled between supra- and subzero temperatures showed better long-term survival than at constant -5°C. The temperature of crystallization (Tc) was ∼-23°C and no larvae survived freezing after reaching their Tc. Larvae exposed to inoculative freezing survived brief, mild treatments (70% survival of -5°C for 2h) but survival was reduced compared to larvae cooled in the absence of ice. Reduced photophase, rapid cold hardening, dehydration, and long-term thermal acclimation all improved larval cold hardiness to varying degrees. Survival data were compared to measurements of hibernacula conditions, and we conclude that larvae face little threat from cold-induced mortality but inoculative freezing does pose a risk, and the geographic distribution of D. variabilis is only minimally influenced by the ability of larvae to survive low temperature exposure.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Dermacentor/fisiologia , Estações do Ano , Animais , Meio Ambiente , Feminino , Larva , Ohio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...