Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(12): 5509-5519, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38471975

RESUMO

Introduction of oxygen into aromatic C-H bonds is intriguing from both fundamental and practical perspectives. Although the 3d metal-catalyzed hydroxylation of arenes by H2O2 has been developed by several prominent researchers, a definitive mechanism for these crucial transformations remains elusive. Herein, density functional theory calculations were used to shed light on the mechanism of the established hydroxylation reaction of benzene with H2O2, catalyzed by [NiII(tepa)]2+ (tepa = tris[2-(pyridin-2-yl)ethyl]amine). Dinickel(III) bis(µ-oxo) species have been proposed as the key intermediate responsible for the benzene hydroxylation reaction. Our findings indicate that while the dinickel dioxygen species can be generated as a stable structure, it cannot serve as an active catalyst in this transformation. The calculations allowed us to unveil an unprecedented mechanism composed of six main steps as follows: (i) deprotonation of coordinated H2O2, (ii) oxidative addition, (iii) water elimination, (iv) benzene addition, (v) ketone generation, and (vi) tautomerization and regeneration of the active catalyst. Addition of benzene to oxygen, which occurs via a radical mechanism, turns out to be the rate-determining step in the overall reaction. This study demonstrates the critical role of Ni-oxyl species in such transformations, highlighting how the unpaired spin density value on oxygen and positive charges on the Ni-O• complex affect the activation barrier for benzene addition.

2.
ACS Omega ; 9(1): 1106-1112, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222626

RESUMO

Diazo compounds are commonly employed as carbene precursors in carbene transfer reactions during a variety of functionalization procedures. Release of N2 gas from diazo compounds may lead to carbene formation, and the ease of this process is highly dependent on the characteristics of the substituents located in the vicinity of the diazo moiety. A quantum mechanical density functional theory assisted by machine learning was used to investigate the relationship between the chemical features of diazo compounds and the activation energy required for N2 elimination. Our results suggest that diazo molecules, possessing a higher positive partial charge on the carbene carbon and more negative charge on the terminal nitrogen, encounter a lower energy barrier. A more positive C charge decreases the π-donor ability of the carbene lone pair to the π* orbital of N2, while the more negative N charge is a result of a weak interaction between N2 lone pair and vacant p orbital of the carbene. The findings of this study can pave the way for molecular engineering for the purpose of carbene generation, which serves as a crucial intermediate for many chemical transformations in synthetic chemistry.

3.
Nat Commun ; 14(1): 831, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788212

RESUMO

Azepinone derivatives are privileged in organic synthesis and pharmaceuticals. Synthetic approaches to these frameworks are limited to complex substrates, strong bases, high power UV light or noble metal catalysis. We herein report a mild synthesis of azepinone derivatives by a photochemical generation of 2-aryloxyaryl nitrene, [2 + 1] annulation, ring expansion/water addition cascade reaction without using any metal catalyst. Among the different nitrene precursors tested, 2-aryloxyaryl azides performed best under blue light irradiation and Brønsted acid catalysis. The reaction scope is broad and the obtained products underwent divergent transformations to afford other related compounds. A computational study suggests a pathway involving a step-wise aziridine formation, followed by a ring-expansion to the seven-membered heterocycle. Finally, water is added in a regio-selective manner, this is accelerated by the added TsOH.

4.
J Org Chem ; 87(19): 13280-13287, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36162101

RESUMO

The 2-iodoxybenzoic acid (IBX)-controlled oxidative dearomatization of pyrroles occurs very slowly (or not all) in many organic solvents, including DMSO in which IBX is soluble. Interestingly, although IBX is only partially soluble in acetic acid, this solvent mediates the pyrrole oxidative dearomatization. With the aid of density functional theory (DFT) calculations, we have discovered a new mode of reactivity, termed the periodinane oxy-assisted (POA) oxidation mechanism, which explains this observation.


Assuntos
Ácido Acético , Pirróis , Dimetil Sulfóxido , Estresse Oxidativo , Solventes
5.
Chemistry ; 28(45): e202201422, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560742

RESUMO

An efficient and mild reaction protocol for the decarbonylation of isocyanates has been developed using catalytic amounts of Lewis acidic boranes. The electronic nature (electron withdrawing, electron neutral, and electron donating) and the position of the substituents (ortho/meta/para) bound to isocyanate controls the chain length and composition of the products formed in the reaction. Detailed DFT studies were undertaken to account for the formation of the mono/di-carboxamidation products and benzoxazolone compounds.


Assuntos
Boranos , Isocianatos , Catálise , Ácidos de Lewis
6.
Chem Commun (Camb) ; 57(72): 9108-9111, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498641

RESUMO

We thoroughly investigated mechanistic features of dichlorination of diazoacetates using PhICl2 catalysed by pyridine. We found that the pyridine serves as a catalyst for decomposition of PhICl2 to PhI and Cl2, leading to the dichlorination step being driven by the in situ generated Cl2. This type of activation was found to be applicable to other amine-catalysed chlorination reactions using PhICl2.

7.
Nat Commun ; 12(1): 4065, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210971

RESUMO

Strategies that enable intermolecular site-selective C-H bond functionalisation of organic molecules provide one of the cornerstones of modern chemical synthesis. In chloroalkane synthesis, such methods for intermolecular site-selective aliphatic C-H bond chlorination have, however, remained conspicuously rare. Here, we present a copper(I)-catalysed synthetic method for the efficient site-selective C(sp3)-H bond chlorination of ketones, (E)-enones and alkylbenzenes by dichloramine-T at room temperature. A key feature of the broad substrate scope is tolerance to unsaturation, which would normally pose an immense challenge in chemoselective aliphatic C-H bond functionalisation. By unlocking dichloramine-T's potential as a chlorine radical atom source, the product site-selectivities achieved are among the most selective in alkane functionalisation and should find widespread utility in chemical synthesis. This is exemplified by the late-stage site-selective modification of a number of natural products and bioactive compounds, and gram-scale preparation and formal synthesis of two drug molecules.


Assuntos
Domínio Catalítico , Cobre/química , Cetonas/química , Sulfonamidas/química , Produtos Biológicos/química , Carbono/química , Catálise , Halogenação , Hidrogênio/química , Temperatura
8.
Chem Sci ; 12(20): 7185-7195, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-34123345

RESUMO

Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)-H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)-H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd-C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C-O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X- anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG ‡ 0-6 kcal mol-1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)-Pd(iv)-Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.

9.
J Org Chem ; 86(3): 2998-3007, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502190

RESUMO

Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO-), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO- through lowering the activation energy of this process. This investigation also demonstrates why BrO- is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromide-our calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO-. Overall, this work demonstrates that the hypervalent iodine(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.


Assuntos
Brometos , Água , Álcoois , Catálise , Oxirredução
10.
Chemistry ; 27(10): 3552-3559, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33210327

RESUMO

A simple gold-catalyzed annulation of 1,8-dialkynylnaphthalenes utilizing a cationic gold catalyst was developed. Such a peri-position of two alkynyl substituents has not been studied in gold catalysis before. Dependent on the substrate, the reactions either follow a mechanism involving vinyl cation intermediates or involve a dual gold catalysis mechanism which in an initial 6-endo-dig-cyclization generates gold(I) vinylidene intermediates that are able to insert into C-H bonds. Indenophenalene derivatives were obtained in moderate to high yields. In addition, the bidirectional gold-catalyzed annulation of tetraynes provided even larger conjugated π-systems. The optoelectronic properties of the products were also investigated.

11.
Org Biomol Chem ; 18(40): 8103-8108, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33006357

RESUMO

A combination of iodosobenzene (PhIO) and molecular iodine (I2) is well-documented to produce a key species capable of conducting various organic reactions through radical mechanisms. This key species is identified here by density functional theory (DFT) calculations to be the hypoiodite radical (IO˙). The calculations show that two equivalents of IO˙ are generated when I2 reacts with two equivalents of PhIO. One of the ensuing IO˙ species acts as a hydrogen abstractor and thus forms an organic radical and the other one is involved in oxidation of the resultant organic radical to afford the final product.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 235: 118280, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248034

RESUMO

To clarify the interaction of phosphine copper(I) complex with DNA, our study reports the synthesis of a new phosphine copper(I) complex, along with a detailed analysis of the geometry characterization and its interaction with double-stranded DNA. The triclinic phase Cu(PPh3)2(L)(I) with a tetrahedral geometry was identified as the product of the reaction of copper(I) iodide with (E,E)-N,N'-1,2-Ethanediylbis[1-(3-pyridinyl)methanimine] ligand and triphenylphosphine by single-crystal X-ray analysis. Molecular interaction of the synthesized complex with the calf thymus deoxyribonucleic acid (ct-DNA) was investigated in the physiological buffer (pH 7.4) by multi-spectroscopic approaches associated with a competitive displacement towards Hoechst 33258 and methylene blue (MB) as groove and intercalator probes. The fluorescence and UV/Vis results detected the formation of a complex-DNA adduct in the ground-state with a binding affinity in order of 104 M-1, which is in keeping with both groove binders and intercalators. The thermodynamic parameters, ΔS0 = -200.31 ± 0.08 cal/mol·K and ΔH0 = -63.11 ± 0.24 kcal/mol, confirmed that the van der Waals interaction is the main driving force for the binding process. Moreover, the ionic strength and pH effect experiments demonstrated the electrostatic interactions between the complex and DNA is negligible. Analysis of the molecular docking simulation declared the flat (E,E)-N,N'-1,2-Ethanediylbis[1-(3-pyridinyl)methanimine] part of the complex was inserted between the sequential A…T/A…T base pairs, while the phosphine substituents were located in the groove, i.e. threading intercalation. Besides, the cytotoxicity of the complex against the MCF-7 human breast cancer cells was detected at IC50 = 10 µg/mL.


Assuntos
Cobre/análise , DNA/análise , Fosfinas/análise , Apoptose , Sítios de Ligação , DNA/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Íons , Células MCF-7 , Modelos Moleculares , Simulação de Acoplamento Molecular , Concentração Osmolar , Espectrofotometria Ultravioleta , Eletricidade Estática , Termodinâmica , Raios X
13.
Chem Sci ; 11(40): 10945-10950, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34094344

RESUMO

Efficient methods for the synthesis of fused-aromatic rings is a critical endeavour in the creation of new pharmaceuticals and materials. A direct method for preparing these systems is the tetradehydro-Diels-Alder reaction, however this is limited by the need for harsh reaction conditions. A potential, but underdeveloped, route to these systems is via transition metal-catalysed cycloaromatisation of ene-diynes. Herein, tethered unconjugated enediynes have been shown to undergo a facile room-temperature RhI-catalysed intramolecular tetradehydro-Diels-Alder reaction to produce highly substituted isobenzofurans, isoindolines and an indane. Furthermore, experimental and computational studies suggest a novel mechanism involving an unprecedented and complex RhI/RhIII/RhI/RhIII redox cycle involving the formation of an unusual strained 7-membered rhodacyclic allene intermediate and a RhIII-stabilized 6-membered ring allene complex.

14.
Mol Divers ; 24(4): 1223-1234, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31485890

RESUMO

A new series of aryloxyacetophenone thiosemicarbazones 4a-q have been synthesized as anti-Toxoplasma gondii agents. All compounds showed significant inhibitory activity against T. gondii-infected cells (IC50 values 1.09-25.19 µg/mL). The 4-fluorophenoxy derivative (4l) was the most potent compound with the highest selectivity toward host cells (SI = 19), being better than standard drug pyrimethamine. SAR study indicated that the concurrence of proper substituents on both aryl ring of phenoxyacetophenone is important for potency and safety profile. Further in vitro experiments with the representative compounds 4l and 4p revealed that these compounds at the concentration of 5 µg/mL can significantly reduce the viability of T. gondii tachyzoites, as well as their infectivity rate and intracellular proliferation, comparable to those of pyrimethamine.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia , Toxoplasma/efeitos dos fármacos , Acetofenonas/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Pirimetamina/química , Células Vero
15.
J Org Chem ; 85(2): 515-525, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31876155

RESUMO

Density functional theory was utilized to investigate plausible mechanisms for amine and alcohol oxidation by an iodine(V) hypervalent reagent (IBX). In this contribution, we found that amine and alcohol oxidation both proceed by similar mechanisms. The reactions initiate from ligand exchange to give four coordinate intermediates followed by a redox process giving an iodine(III) species and oxidized substrates. Interestingly, for both the ligand-exchange and the redox steps a hypervalent twist is required for the reaction to proceed via an energetically more accessible route. The ligand-exchange process was found to be mediated by a proton-shuttling agent such as water, a second IBX, or a second substrate. While the ligand-exchange step for both amine and alcohol occurs with almost identical activation energy (particularly when water is considered as the shuttling agent), the redox step for the amine takes place with much lower activation energy than that for the alcohol. Finally, we ascertained that five coordinate amide iodine(V) complexes are unreactive toward redox reactions due to the fact that in such cases two electrons from the coordinated amide are required to occupy a 3c-4e σ* orbital which is too high in energy to be reachable.

16.
Angew Chem Int Ed Engl ; 59(1): 471-478, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622542

RESUMO

We report a switchable synthesis of acylindoles and quinoline derivatives via gold-catalyzed annulations of anthranils and ynamides. α-Imino gold carbenes, generated in situ from anthranils and an N,O-coordinated gold(III) catalyst, undergo electrophilic attack to the aryl π-bond, followed by unexpected and highly selective 1,4- or 1,3-acyl migrations to form 6-acylindoles or 5-acylindoles. With the (2-biphenyl)di-tert-butylphosphine (JohnPhos) ligand, gold(I) carbenes experienced carbene/carbonyl additions to deliver quinoline oxides. Some of these epoxides are valuable substrates for the preparation of 3-hydroxylquinolines, quinolin-3(4H)-ones, and polycyclic compounds via facile in situ rearrangements. The reaction can be efficiently conducted on a gram scale and the obtained products are valuable substrates for preparing other potentially useful compounds. A computational study explained the unexpected selectivities and the dependency of the reaction pathway on the oxidation state and ligands of gold. With gold(III) the barrier for the formation of the strained oxirane ring is too high; whereas with gold(I) this transition state becomes accessible. Furthermore, energetic barriers to migration of the substituents on the intermediate sigma-complexes support the observed substitution pattern in the final product.

17.
Chemistry ; 24(33): 8361-8368, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29655208

RESUMO

Density functional theory (DFT) was utilized to explore the reduction of gold(III) complexes by the amino acid glycine (Gly). Interestingly, when the nitrogen atom of Gly coordinates to the gold(III) center, its Cα -hydrogen atom becomes so acidic that it can be easily deprotonated by a mild base like water. The deprotonation converts the amino acid into a potent reductant by which gold(III) is reduced to gold(I) with a moderate activation energy. To our knowledge, this is the first contribution suggesting that primary amines are oxidized to imines via direct α-carbon deprotonation. This finding may provide new insights into the mechanistic interpretation of amine oxidations catalyzed/mediated by a center with high cathodic reduction potential. This work also provides a rationalization behind why gold(III) complexes with amine-based polydentate ligands are reluctant to undergo a redox process. Gold(III) reduction occurs most efficiently if the Cα proton leaves in the plane of the Cα , N and Au atoms. Chelation prevents this alignment, resulting in the gold(III) complex being unreactive toward reduction. It has been experimentally found that gold(III) is capable of oxidizing Gly to glyoxylic acid (GA) as the initial product. The latter, in the presence of another gold(III) complex, has been reported to undergo oxidative decarboxylation to afford CO2 and HCOOH. This process is found to be mediated by formation of a geminal diol intermediate produced by reaction of water with the aldehyde functional group of the coordinated GA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...