Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 678: 135-143, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37634411

RESUMO

Hematological malignancies(HMs) are highly heterogeneous diseases with globally rising incidence. Despite major improvements in the management of HMs, conventional therapies have limited efficacy, and relapses with high mortality rates are still frequent. Cordycepin, a nucleoside analog extracted from Cordyceps species, represents a wide range of therapeutic effects, including anti-inflammatory, anti-tumor, and anti-metastatic activities. Cordycepin induces apoptosis in different subtypes of HMs by triggering adenosine receptors, death receptors, and several vital signaling pathways such as MAPK, ERK, PI3K, AKT, and GSK-3ß/ß-catenin. This review article summarizes the impact of utilizing cordycepin on HMs, and highlights its potential as a promising avenue for future cancer research based on evidence from in vitro and in vivo studies, as well as clinical trials.


Assuntos
Neoplasias Hematológicas , Humanos , Glicogênio Sintase Quinase 3 beta , Neoplasias Hematológicas/tratamento farmacológico , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Apoptose
2.
Biochem Biophys Res Commun ; 676: 13-20, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480688

RESUMO

INTRODUCTION: T-cell acute lymphoblastic leukemia is characterized by its fast progression rate and high complications. TRAIL can be used to trigger apoptosis in cancer cells with minimal effects on normal cells, but most of cancer cells develop resistance to this agent through various mechanisms. HDAC inhibitors like SAHA can be used to make cancer cells more susceptible to TRAIL-induced apoptosis. In this study, this hypothesis was tested on MOLT-4 cancer cell line. MATERIALS AND METHODS: The cells were divided into six groups including the control group, TRAIL 50 nM, TRAIL 100 nM, SAHA 2 µM, SAHA 2 µM + TRAIL 50 nM, and SAHA 2 µM + TRAIL 100 nM. Apoptosis was evaluated by flowcytometry after 24, 48 and 72 h. The expression levels of c-flip, DR4, DR5, CHOP, NF-κB, STAT3, Akt, and PI3K genes were investigated by quantitative real-time PCR. Data were analyzed using two-way variance analysis with Tukey's and Dunnett's multiple comparisons tests, and statistical significance was defined as having a p-value less than 0.05. RESULTS: Groups exposed to the combination of SAHA with TRAIL demonstrated the maximum apoptosis in MOLT-4 cells by increasing the expression of DR4, DR5, and CHOP and decreasing the expression of c-flip, STAT3, PI3k, Akt, and NF-kB genes. CONCLUSION: It can be concluded that SAHA increases the sensitivity of MOLT-4 cells to TRAIL-mediated apoptosis, which can be used as a strategy to overcome resistance to TRAIL in leukemic patients.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , Apoptose , Linhagem Celular , Citometria de Fluxo , NF-kappa B , Fosfatidilinositol 3-Quinases
3.
Iran J Public Health ; 51(4): 895-903, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35936524

RESUMO

Background: B-cell lymphoma 2 (BCL-2) and BCL-2 associated X (BAX) polymorphisms are important in the apoptosis process, response to treatment and survival in Acute Lymphoblastic Leukemia (ALL) patients. We aimed to investigate the effect of these genes with other predictors corresponding to the survival of ALL patients with an appropriate frailty survival model. Methods: Our study was performed in 2020 on sixty-two cases of childhood aged 3-16 (year) with ALL disease who were selected by convenience sampling from the two hospitals of Tabriz, Iran. RFLPPCR method was used for genotyping the promoter region of the BAX and BCL-2 genes. We used different frailty survival models, to control heterogeneity between individuals due to unmeasured factors affecting their survival. All analyses were implemented using Stata 16. Results: Based on the result of log-logistic model along with frailty gamma, the proportional odds (standard error) of survival for a CC allele of BCL-2 patient compared to a AA allele patient were 6.0 (1.47); P<0.001 and for a AC of BCL-2 allele patient were 0.57 (1.23); P=0.009. Patients with AG allele of BAX had 2.05 (1.26) times greater odds of surviving than a AA allele patient (P=0.003). The odds of survival of patients with abnormal white blood cell (WBC) were 92% less than normal WBC (P<0.001). Conclusion: With controlling unmeasured factors affecting, the BCL-2 and BAX genes promoter polymorphism are effective in the survival rates for ALL.

4.
Genes Dis ; 9(4): 849-867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685482

RESUMO

Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.

5.
Biotechnol Appl Biochem ; 69(2): 822-839, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33786874

RESUMO

Mesenchymal stem cells (MSCs) are one of the most prominent cells in the bone marrow. MSCs can affect acute lymphocytic leukemia (ALL) cells under hypoxic conditions. With this aim, we used MOLT-4 cells as simulators of ALL cells cocultured with bone marrow mesenchymal stem cells (BMMSCs) under hypoxic conditions in vitro. Then, mRNA and protein expression of the MAT2A, PDK1, and HK2 genes were evaluated by real-time PCR and Western blot which was also followed by apoptosis measurement by a flow-cytometric method. Next, the methylation status of the target genes was investigated by MS-qPCR. Additionally, candidate gene expressions were examined after treatment with rapamycin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We found that the mRNA expression of the candidate genes was augmented under the hypoxic condition in which MAT2A was upregulated in cocultured cells compared to MOLT-4, while HK2 and PDK1 were downregulated. Moreover, we found an association between gene expression and promoter methylation levels of target genes. Besides, expressions of the candidate genes were decreased, while their methylation levels were promoted following treatment with rapamycin. Our results suggest an important role for the BMMSC in regulating the methylation of genes involved in cell survival in hypoxia conditions; however, we found no evidence to prove the MSCs' effect on directing malignant lymphoblastic cells to apoptosis.


Assuntos
Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose/genética , Células da Medula Óssea/metabolismo , Hipóxia Celular/genética , Humanos , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metionina Adenosiltransferase , Metilação , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA Mensageiro/metabolismo , Sirolimo
6.
J Cell Physiol ; 236(6): 4097-4105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33184857

RESUMO

Multiple factors, including growth factors, are shown to be culprits of cancer outset and persistence. Among growth factors, insulin-like growth factors (IGFs) family are of more importance in the prognosis of blood malignancies. After binding to their corresponding receptor, IGFs initiate PI3K/AKT signaling pathway and increase the translation of intracellular proteins, such as cell division-related proteins. They also stimulate the transcription of cell division-related genes using the Ras-GTP pathway. In addition to organs such as the liver, IGFs are secreted by tumor cells and can cause growth and proliferation of self or tumor cells via autocrine and paracrine methods. Current studies indicate that decreasing the effects of IGF by blocking them, their receptors, or PI3K/AKT pathway using various drugs could help to suppress the division of tumor cells. Here, we delineate the role of the IGF family in hematologic malignancies and their potential mechanisms.


Assuntos
Neoplasias Hematológicas/metabolismo , Somatomedinas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Ligantes , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/uso terapêutico
7.
Bioimpacts ; 10(4): 243-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983940

RESUMO

Introduction: Nowadays, mesenchymal stem cells are touted as suitable cell supply for the restoration of injured bone tissue. The existence of osteogenic differentiation makes these cells capable of replenishing damaged cells in the least possible time. It has been shown that epigenetic modifications, especially DNA methylation, contribute to the regulation of various transcription factors during phenotype acquisition. Hence, we concentrated on the correlation between the promoter methylation and the expression of genes DLX3, ATF4 , and FRA1 during osteoblastic differentiation of adipose-derived mesenchymal stem cells in vitro after 21 days. Methods: Adipose-derived mesenchymal stem cells were cultured in osteogenesis differentiation medium supplemented with 0.1 µM dexamethasone, 10 mM ß-glycerol phosphate, and 50 µM ascorbate-2-phosphate for 21 days. RNA and DNA extraction was done on days 0, 7, 14, and 21. Promoter methylation and expression levels of genes DLX3 , ATF4 , and FRA1 were analyzed by methylation-specific quantitative PCR and real-time PCR assays, respectively. Results: We found an upward expression trend with the increasing time for genes DLX3, ATF4, and FRA1 in stem cells committed to osteoblast-like lineage compared to the control group (P <0.05). On the contrary, methylation-specific quantitative PCR displayed decreased methylation rates of DLX3 and ATF4 genes, but not FRA1 , over time compared to the non-treated control cells (P <0.05). Bright-field images exhibited red-colored calcified deposits around Alizarin Red S-stained cells after 21 days compared to the control group. Statistical analysis showed a strong correlation between the transcription of genes DLX3 and ATF4 and methylation rate (P <0.05). Conclusion: In particular, osteoblastic differentiation of adipose-derived mesenchymal stem cells enhances DLX3 and ATF4 transcriptions by reducing methylation rate for 21 days.

8.
Adv Pharm Bull ; 10(1): 81-87, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32002365

RESUMO

Purpose: Sepantronium bromide (YM155) is a Survivin inhibitor which recently advanced as an anticancer agent in phase II clinical trials. Survivin belongs to IAP (inhibitor of apoptosis) gene family and is a pivotal target for treatment due to its overexpression and oncogenic function in many malignancies, including acute lymphoblastic leukemia (ALL). Although survivin is a specific target for YM155, recent reports have shown that it has many other crucial targets that regulate its anti-apoptotic effects. The aim of this study was to investigate whether YM155 could have an effect on cell death-inducing genes as well as inducing apoptosis in T-ALL MOLT4- cell line. Methods: We treated MOLT-4 cells with increasing concentrations of YM155 and then cell viability was determined using MTT (methyl thiazolyl tetrazolium) assay. Also, the rate of induction of apoptosis in MOLT-4 cells and the target genes expression levels were evaluated by Annexin V/PI and real-time PCR, respectively. Results: YM155 inhibited cell growth in MOLT-4 cells. This outcome is achieved by inducing apoptosis and a significant increase in the expression level of P53, MiR-9, caspase 3 and decreasing the mRNA expression levels of survivin, Sirtuin1(SIRT1), member of anti-apoptotic proteins family (Bcl-2), and epithelial-to-mesenchymal transition (EMT) initiating factors Snail1and Zeb2. Conclusion: The results showed that use of YM155 can be a potential drug therapy in T-ALL patients with promising effects on apoptosis induction.

9.
Blood Res ; 54(2): 144-148, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31309094

RESUMO

BACKGROUND: Ikaros family zinc finger 1 (IKZF1) is a transcription factor with an important role in controlling hematopoietic proliferation and function, particularly lymphoid cell differentiation. It was previously shown that various mechanisms and expression patterns of Ikaros are linked to a variety of cancers. We hypothesized that aberrant methylation (hypomethylation) of the IKZF1 promoter region might be one of the causes of B-cell acute lymphoblastic leukemia (B-ALL). In B-ALL patients, an increased expression of this gene is a potential cause of B-cell differentiation arrest and proliferation induction. Therefore, as more than 90% of patients with ALL are <15 years old, we investigated the methylation pattern of the IKZF1 promoter in childhood B-ALL. METHODS: Twenty-five newly diagnosed B-ALL cases were included (all younger than 15 yr). In addition, we selected 25 healthy age- and sex-matched children as the control group. We collected the blood samples in EDTA-containing tubes and isolated lymphocytes from whole blood using Ficoll 1.077 Lymphosep. Next, we extracted genomic DNA with the phenol/chloroform method. Two microgram of DNA per sample was treated with sodium bisulfite using the EpiTect Bisulfite Kit, followed by an assessment of DNA methylation by polymerase chain reaction (PCR) analysis of the bisulfite-modified genomic DNA. RESULTS: Our data highlighted a hypomethylated status of the IKZF1 promoter in the ALL cases (96% of the cases were unmethylated). In contrast, the control group samples were partially methylated (68%). CONCLUSION: This study demonstrated a hypomethylated pattern of the IKZF1 promoter region in childhood B-ALL, which might underlie the aberrant Ikaros expression patterns that were previously linked to this malignancy.

10.
J Cell Physiol ; 234(9): 14783-14799, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30773635

RESUMO

Zinc finger E-box binding homeobox 2 (ZEB2) is a DNA-binding transcription factor, which is mainly involved in epithelial-to-mesenchymal transition (EMT). EMT is a conserved process during which mature and adherent epithelial-like state is converted into a mobile mesenchymal state. Emerging data indicate that ZEB2 plays a pivotal role in EMT-induced processes such as development, differentiation, and malignant mechanisms, for example, drug resistance, cancer stem cell-like traits, apoptosis, survival, cell cycle arrest, tumor recurrence, and metastasis. In this regard, the understanding of mentioned subjects in the development of normal and cancerous cells could be helpful in cancer complexity of diagnosis and therapy. In this study, we review recent findings about the biological properties of ZEB2 in healthy and cancerous states to find new approaches for cancer treatment.

11.
J Cell Physiol ; 234(9): 15108-15122, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30652308

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells and show distinct features such as capability for self-renewal and differentiation into several lineages of cells including osteoblasts, chondrocytes, and adipocytes. In this study, the methylation status of the promoter region of zinc finger and BTB domain containing 16 (ZBTB16), twist-related protein 1(Twist1), de novo DNA methyltransferases 3A (DNMT3A), SRY-box 9 (Sox9), osteocalcin (OCN), and peroxisome proliferator-activated receptor γ2 (PPARγ2) genes and their messenger RNA (mRNA) expression levels were evaluated during the osteoblastic differentiation of MSCs (ODMSCs). We planned two experimental groups including zoledronic acid (ZA)-treated and nontreated cells (negative control) which both were differentiated into the osteoblasts. Methylation level of DNA in the promoter regions was assayed by methylation-specific-quantitative polymerase chain reaction (MS-qPCR), and mRNA levels of the target inhibitory/stimulatory genes during osteoblastic differentiation of MSCs were measured using real-time PCR. During the experimental induction of ODMSCs, the mRNA expression of the OCN gene was upregulated and methylation level of its promoter region was decreased. Moreover, Sox9 and PPARγ2 mRNA levels were attenuated and their promoter regions methylation levels were significantly augmented. However, the mRNA expression of the DNMT3A was not affected during the ODMSCs though its methylation rate was increased. In addition, ZA could enhance the expression of the ZBTB16 and decrease its promoter regions methylation and on the opposite side, it diminished mRNA expression of Sox9, Twist1, and PPARγ2 genes and increased their methylation rates. Intriguingly, ZA did not show a significant impact on gene expression and methylation levels the OCN and DNMT3A. We found that methylation of the promoter regions of Sox9, OCN, and PPARγ2 genes might be one of the main mechanisms adjusting the genes expression during the ODMSCs. Furthermore, we noticed that ZA can accelerate the MSCs differentiation to the osteoblast cells via two regulatory processes; suppression of osteoblastic differentiation inhibitor genes including Sox9, Twist1, and PPARγ2, and through promotion of the ZBTB16 expression.

12.
J Cell Physiol ; 234(5): 6230-6243, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30246336

RESUMO

BACKGROUND: Osteoblastic differentiation of mesenchymal stem cells (MSCs) is the principal stage during the restoration and regeneration of bone tissue. Epigenetic modifications such as DNA methylation play a key role in the differentiation process of stem cells. In this study, the methylation status of the promoter region of ZBTB16 and Twist1 genes and their role in controlling osteoblastic differentiation in MSCs was investigated during the osteoblastic differentiation of MSCs. METHODS: The MSCs were cultured under standard conditions and differentiated into the osteoblasts. We had three treatment groups including 5-azacytidine (methylation inhibitor), metformin (Twist-inhibitor), and procaine (Wnt/ß-catenin inhibitor) and a non-treated group (control). Methylation level of DNA in the promoter regions was monitored by methylation specific-quantitative polymerase chain reaction (PCR). Also, the mRNA levels of key genes in osteoblastic differentiation were measured using real-time PCR. RESULTS: ZBTB16 gene expression was upregulated, and promoter methylation was decreased. For Twist1 messenger RNA (mRNA) level decreased and promoter methylation increased during osteoblastic differentiation of MSCs. 5-Azacytidine caused a significant reduction in methylation and increased the mRNA expression of ZBTB16 and Twist1. Metformin repressed the Twist1 expression, and therefore osteoblastic differentiation was increased. On the opposite side, procaine could block the WNT/ß-catenin signaling pathway, as a consequence the gene expression of key genes involved in osteoblastic differentiation was declined. CONCLUSION: We found that methylation of DNA in the promoter region of ZBTB16 and Twist1 genes might be one of the main mechanisms that controlling the gene expression during osteoblastic differentiation of MSCs. Also, we could find an association between regulation of Twist1 and ZBTB16 genes and osteoblastic differentiation in MSCs by showing the relation between their expression and some key genes involved in osteoblastic differentiation. In addition, we found a connection between the Twist1 expression level and osteoblastic differentiation by using a Twist-inhibitor (metformin).


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Células-Tronco Mesenquimais/citologia , Proteínas Nucleares/genética , Osteoblastos/citologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína 1 Relacionada a Twist/genética , Linhagem Celular , Metilação de DNA/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/biossíntese , Osteoblastos/metabolismo , Osteogênese/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/biossíntese , Proteína 1 Relacionada a Twist/biossíntese
13.
J Cell Physiol ; 234(2): 1268-1288, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30191962

RESUMO

Recently a growing attention in scientific community has been gathered on potential application of mesenchymal stem cells (MSCs) in various fields of medicine. Owing to the fact that they can be easily isolated from different sources, and simply proliferated in large quantities while keeping their original biological characteristics, they can be successfully used as cell-based therapeutics. Engineering MSCs and other type of stem cells to be carriers of therapeutic agents is a new tactic in the targeted gene and cell therapy of cancers and degenerative diseases. Various useful properties of MSCs including tropism toward tumor/injury site(s), weakly immunogenic, production of anti-inflammatory molecules, and safety against normal tissues have made them prone for regenerative medicine, targeted therapy and treating injured tissues, and immunological abnormalities. In this review, we introduce latest advances, methods, and applications of MSCs in gene therapy of various malignant organ disorders. Additionally, we will cover the problems and challenges which researchers have faced with when trying to translate their basic experimental findings in MSCs research to clinically applicable therapeutics.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Regeneração , Medicina Regenerativa/métodos , Animais , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Células-Tronco Mesenquimais/imunologia , Fenótipo , Transdução de Sinais
14.
Genes Dis ; 5(4): 304-311, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30591931

RESUMO

Epigenetic, along with genetic mechanisms, is essential for natural evolution and maintenance of specific patterns of gene expression in mammalians. Global epigenetic variation is inherited somatically and unlike genetic variation, it is dynamic and reversible. They are somatically associated with known genetic variations. Recent studies indicate the broad role of epigenetic mechanisms in the initiation and development of cancers, that they are including DNA methylation, histone modifications, nucleosomes changes, non-coding RNAs. The reversible nature of epigenetic changes has led to the emergence of novel epigenetic therapeutic approaches, so that several types of these medications have been approved by the FDA so far. In this review, we discuss the concept of epigenetic changes in diseases, especially cancers, the role of these changes in the onset and progression of cancers and the potential of using this knowledge in designing novel therapeutic strategies.

15.
Biomed Pharmacother ; 107: 1010-1019, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257312

RESUMO

The treatment for leukemic malignancies remains a challenge despite the wide use of conventional chemotherapies. Therefore, new therapeutic approaches are highly demanded. TNF-related apoptosis-inducing ligand (TRAIL) represents a targeted therapy against cancer because it induces apoptosis only in tumor cells. TRAIL is currently under investigation for the treatment of leukemia. Preclinical studies evaluated the potential therapeutic efficacy of TRAIL on cell lines and clinical samples and showed promising results. However, like most anti-cancer drugs, resistance to TRAIL-induced apoptosis may limit its clinical efficacy. It is critical to understand the molecular mechanisms of TRAIL. Therefore, rational therapeutic drug combinations for clinical trials of TRAIL-based therapies might be achieved. In a variety of leukemic cells, overexpression of X-linked inhibitor of apoptosis protein (XIAP), a negative regulator of apoptosis pathway, has been discovered. Implication of XIAP in the ineffective induction of cell death by TRAIL in leukemia has been explored in several resistant cell lines. XIAP inhibitors restored TRAIL sensitivity in resistant cells and primary leukemic blasts. Moreover, TRAIL resistance in leukemic cells could be overcome by the effects of several anti-leukemic agents via the mechanisms of XIAP downregulation. Here, we discuss targeting XIAP, a strategy to restore TRAIL sensitivity in leukemia to acquire more insights into the mechanisms of TRAIL resistance. The concluding remarks may lead to identify putative ways to resensitize tumors.


Assuntos
Leucemia/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia/genética , Leucemia/patologia , Terapia de Alvo Molecular , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem
16.
Asian Pac J Cancer Prev ; 19(9): 2599-2605, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30256066

RESUMO

Background: In many cases of breast cancer, the aberrant methylation of TP53 gene leads to uncontrolled cell proliferation and apoptosis inhibition. Moreover, expression of oncogenes which are under the control of P53 protein could be altered. Survivin as a conspicuous example of this category plays important roles in tumorigenesis, drug resistance and apoptosis inhibition. The present study was done to reveal the effects of Scrophularia atropatana extract on epigenetic situation of TP53 gene promoter and the expression levels of anti-apoptotic gene, survivin and its potential for production of cancer epi-drugs. Methods: Cytotoxic effect of dichloromethane extracts of Scrophularia plant on MCF-7 cell line was assessed in our previous study. Cell death ELISA (enzyme-linked immunosorbent assay) and TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) tests were used to investigate the occurrence of apoptosis in the treated cells. Methylation Specific PCR (MSP) was employed to assess the changes in methylation status of the TP53 gene promoter. Furthermore, quantitative real time PCR was utilized to evaluate the resulting changes in TP53 and survivin genes expression. Results: Cell death ELISA and TUNEL assays confirmed the occurrence of apoptosis. MSP test revealed a significant change in the methylation status of TP53 promoter. QRT-PCR showed an increased TP53 gene expression in the treated cells while a significant decrease in survivin mRNA was evident. Conclusions: According to the outcomes, dichloromethane extract of S. atropatana returned the TP53 gene promoter hypermethylation to normal state. This plant could be a promising source for production of epi-drugs due to its apoptotic effects and reversal of TP53 epigenetic alterations.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metilação de DNA , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Scrophularia/química , Survivina/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Survivina/genética , Células Tumorais Cultivadas
17.
J Cell Biochem ; 119(12): 10033-10040, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132966

RESUMO

One of the fundamental barriers leading to failure of leukemia therapy is the resistance against conventional chemotherapies, common modality used to cure leukemia. Having the potential to trigger apoptosis in various human leukemia cell lines, resveratrol is regarded as a robust agent in chemotherapy regimens. The current study was aimed to assess whether the apoptotic effect of resveratrol on T-cell acute lymphoblastic leukemia cell line, CCRF-CEM, is exerted through DNA methylation of BAX and BCL2 gene promoters. For this purpose, the CCRF-CEM cells were treated by resveratrol under standard cell culture. To analyze the promoter DNA methylation changes, we used methylation-specific polymerase chain reaction technique following the resveratrol treatment at different dosages and time intervals. Based on our previous study, the resveratrol treatment can trigger apoptosis in CCRF-CEM cell line via upregulation of apoptotic BAX gene and downregulation of antiapoptotic BCL2 gene. Despite these alterations in gene expression, the current study reveals no changes in DNA methylation patterns of subjected genes following the resveratrol treatment. Unchanged status of DNA methylation of BAX and BCL2 genes may suggest that resveratrol causes the gene expression changes through a distinct mechanism which requires further studies to be understood.


Assuntos
Apoptose , Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Resveratrol/farmacologia , Proteína X Associada a bcl-2/genética , Linhagem Celular Tumoral , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/fisiopatologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Resveratrol/uso terapêutico , Proteína X Associada a bcl-2/metabolismo
18.
J Cell Physiol ; 233(10): 6470-6485, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741767

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily that induces apoptosis in different types of cancer cells via activation of caspase cascade. TRAIL interacts with its cognate receptors that placed on cancer cells surface, including TRAIL-R1 (death receptor 4, DR4), TRAIL-R2 (death receptor 5, DR5), TRAIL-R3 (decoy receptor 1, DcR1), TRAIL-R4 (decoy receptor 2, DcR2), and osteoprotegerin (OPG). Despite high apoptosis-inducing ability of TRAIL, various cancerous cells gain resistance to TRAIL gradually, and consequently TRAIL potential for apoptosis stimulation in these cells diminishes intensely. According to diverse ranges of examinations, intracellular anti-apoptotic proteins, such as cellular-FLICE inhibitory protein (c-FLIP), apoptosis inhibitors (IAPs), myeloid cell leukemia sequence 1 (MCL-1), BCL-2, BCL-XL, and survivin play key role in cancer cells resistance to TRAIL. These proteins attenuate cancer cells sensitivity to TRAIL via various functions, importantly through caspase cascade suppression. The c-FLIP avoids from caspase 8 activation by FADD via binding to caspase 8 cleavage of FADD. Moreover, it activates signaling pathways that involved in cancer cells survival and proliferation. Intriguingly, it appears that the down-regulation of intracellular anti-apoptotic proteins, particularly c-FLIP is effectiveness goal for TRAIL-resistant cancers therapy, because their up-regulation in association with poor prognosis has been observed in various types of TRAIL-resistant cancers. In this review, we tried to collect and examine investigations that researchers have been able to sensitize cancer cells to TRAIL through targeting of c-FLIP alone or with other intracellular anti-apoptotic proteins directly or indirectly. It seems that co-treatment of resistant cells by TRAIL with other therapeutic agents with the aim of intracellular anti-apoptotic proteins inhibition is hopeful and attractive approach to overcome various TRAIL-resistant cancers.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Neoplasias/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/genética , Apoptose/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Survivina/genética , Proteína bcl-X/genética
19.
Cell J ; 20(2): 188-194, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29633596

RESUMO

OBJECTIVES: DNA methylation is a well-studied epigenetic mechanism that is a potent arm of the gene expression controlling machinery. Since the hypoxic situation and the various cells of bone marrow microenvironment, e.g. mesenchymal stem cells, play a role in the in vivo and in vitro biology of leukemic cells, we decided to study the effects of hypoxia and mesenchymal stem cells (MSCs) on the promoter methylation pattern of BAX and BCL2 genes. MATERIALS AND METHODS: In this experimental study, the co-culture of MOLT-4 cells with MSCs and treatment with CoCl2 was done during 6, 12, and 24 hour periods. Total DNA was extracted using commercial DNA extraction kits, and sodium bisulfite (SBS) treatment was performed on the extracted DNA. Methylation specific polymerase chain reaction (MSP) was used to evaluate the methylation status of the selected genes' promoter regions. RESULTS: The BAX and BCL2 promoters of untreated MOLT-4 cells were in partial methylated and fully unmethylated states, respectively. After incubating the cancer cells with CoCl2 and MSCs, the MSP results after 6, 12, and 24 hours were the same as untreated MOLT-4 cells. In other words, the exposure of MOLT-4 cells to the hypoxia-mimicry agent and MSCs in various modes and different time frames showed that these factors have exerted no change on the methylation signature of the studied fragments from the promoter region of the mentioned genes. CONCLUSIONS: Hypoxia and MSCs actually have no notable effect on the methylation status of the promoters of BAX and BCL2 in the specifically studied regions. DNA methylation is probably not the main process by which MSCs and CoCl2 induced hypoxia regulate the expression of these genes. Finally, we are still far from discovering the exact functional mechanisms of gene expression directors, but these investigations can provide new insights into this field for upcoming studies.

20.
J Cell Biochem ; 119(6): 4890-4896, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29377275

RESUMO

Chemotherapy is the most common method to treat leukemia as well as other types of human cancers. However, drug resistance has remained as the main challenge against the efficacy of treatments. Furthermore, having various adverse effects, chemotherapy drugs are becoming replaced by natural modalities for cancer therapy. In this regard, herbal components such as resveratrol and prednisolone have been identified to sensitize the leukemic cells to programmed cell death through a set of complex processes. In this study, we have examined DNA methylation on the human multidrug resistance gene 1 (MDR1) as a well-known marker for cellular drug resistance. We evaluated the effect of resveratrol and prednisolone on DNA methylation patterns of MDR1 gene promoter in the CCRF-CEM cell line as a representative for acute lymphoblastic leukemia. The study was aimed to clarify whether the MDR1 gene expression is regulated via DNA promoter methylation as a potential underlying mechanism, following exposure to resveratrol and prednisolone. Our data revealed that despite a strong influence to down-regulate the MDR1 expression, Resveratrol and Prednisolone did not alter the methylation pattern, suggesting other regulatory mechanisms in controlling the MDR1 expression in CCRF-CEM cell line. Unchanged status of DNA methylation of MDR1 gene may suggest that Resveratrol and Prednisolone causes the gene expression changes through a distinct mechanism which requires further studies to be understood. A more detailed understanding of the mechanisms beyond the regulation of the genes involved in cancer formation will help to design novel therapeutic strategies to fight the human cancers.


Assuntos
Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Prednisolona/farmacologia , Resveratrol/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Linhagem Celular Tumoral , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...