Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(7): 2528-2544, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362440

RESUMO

Amyloid fibrils of proteins such as α-synuclein are a hallmark of neurodegenerative diseases and much research has focused on their kinetics and mechanisms of formation. The question as to the thermodynamic stability of such structures has received much less attention. Here, we newly utilize the principle of transient incomplete separation of species in laminar flow in combination with chemical depolymerization for the quantification of amyloid fibril stability. The relative concentrations of fibrils and monomer at equilibrium are determined through an in situ separation of these species based on their different diffusivity inside a microfluidic capillary. The method is highly sample economical, using much less than a microliter of sample per data point and its only requirement is the presence of aromatic residues (W, Y) because of its label-free nature, which makes it widely applicable. Using this method, we investigate the differences in thermodynamic stability between different fibril polymorphs of α-synuclein and quantify these differences for the first time. Importantly, we show that fibril formation can be under kinetic or thermodynamic control and that a change in solution conditions can both stabilise and destabilise amyloid fibrils. Taken together, our results establish the thermodynamic stability as a well-defined and key parameter that can contribute towards a better understanding of the physiological roles of amyloid fibril polymorphism.

2.
Nat Chem ; 15(9): 1306-1316, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337111

RESUMO

Protein liquid-liquid phase separation can lead to disease-related amyloid fibril formation. The mechanisms of conversion of monomeric protein into condensate droplets and of the latter into fibrils remain elusive. Here, using mass photometry, we demonstrate that the Parkinson's disease-related protein, α-synuclein, can form dynamic nanoscale clusters at physiologically relevant, sub-saturated concentrations. Nanoclusters nucleate in bulk solution and promote amyloid fibril formation of the dilute-phase monomers upon ageing. Their formation is instantaneous, even under conditions where macroscopic assemblies appear only after several days. The slow growth of the nanoclusters can be attributed to a kinetic barrier, probably due to an interfacial penalty from the charged C terminus of α-synuclein. Our findings reveal that α-synuclein phase separation occurs at much wider ranges of solution conditions than reported so far. Importantly, we establish mass photometry as a promising methodology to detect and quantify nanoscale precursors of phase separation. We also demonstrate its general applicability by probing the existence of nanoclusters of a non-amyloidogenic protein, Ddx4n1.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Doença de Parkinson/metabolismo
3.
J Biol Chem ; 298(5): 101848, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314196

RESUMO

Glycation is a nonenzymatic posttranslational modification (PTM) known to be increased in the brains of hyperglycemic patients. Alpha-synuclein (αSN), a central player in the etiology of Parkinson's disease, can be glycated at lysine residues, thereby reducing αSN fibril formation in vitro and modulating αSN aggregation in cells. However, the molecular basis for these effects is unclear. To elucidate this, we investigated the aggregation of αSN modified by eight glycating agents, namely the dicarbonyl compound methylglyoxal (MGO) and the sugars ribose, fructose, mannose, glucose, galactose, sucrose, and lactose. We found that MGO and ribose modify αSN to the greatest extent, and these glycation products are the most efficient inhibitors of fibril formation. We show glycation primarily inhibits elongation rather than nucleation of αSN and has only a modest effect on the level of oligomerization. Furthermore, glycated αSN is not significantly incorporated into fibrils. For both MGO and ribose, we discovered that a level of ∼5 modifications per αSN is optimal for inhibition of elongation. The remaining sugars showed a weak but optimal inhibition at ∼2 modifications per αSN. We propose that this optimal level balances the affinity for the growing ends of the fibril (which decreases with the extent of modification) with the ability to block incorporation of subsequent αSN subunits (which increases with modification). Our results are not only relevant for other αSN PTMs but also for understanding PTMs affecting other fibrillogenic proteins and may thus open novel avenues for therapeutic intervention in protein aggregation disorders.


Assuntos
Agregados Proteicos , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico , alfa-Sinucleína , Humanos , Cinética , Monossacarídeos/química , Agregação Patológica de Proteínas , Aldeído Pirúvico/farmacologia , alfa-Sinucleína/química
4.
Commun Biol ; 5(1): 123, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145226

RESUMO

Aggregation of the 140-residue protein α-synuclein (αSN) is a key factor in the etiology of Parkinson's disease. Although the intensely anionic C-terminal domain (CTD) of αSN does not form part of the amyloid core region or affect membrane binding ability, truncation or reduction of charges in the CTD promotes fibrillation through as yet unknown mechanisms. Here, we study stepwise truncated CTDs and identify a threshold region around residue 121; constructs shorter than this dramatically increase their fibrillation tendency. Remarkably, these effects persist even when as little as 10% of the truncated variant is mixed with the full-length protein. Increased fibrillation can be explained by a substantial increase in self-replication, most likely via fragmentation. Paradoxically, truncation also suppresses toxic oligomer formation, and oligomers that can be formed by chemical modification show reduced membrane affinity and cytotoxicity. These remarkable changes correlate to the loss of negative electrostatic potential in the CTD and highlight a double-edged electrostatic safety guard.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Membranas/metabolismo , Doença de Parkinson/metabolismo , Eletricidade Estática , alfa-Sinucleína/metabolismo
5.
ACS Nano ; 16(1): 1102-1118, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34982538

RESUMO

Nanoparticles (NPs) can modulate protein aggregation and fibril formation in the context of amyloid diseases. Understanding the mechanism of this action remains a critical next step in developing nanomedicines for the treatment or prevention of Parkinson's disease. α-Synuclein (α-Syn) can undergo interactions of different strength with nanoparticles, and these interactions can be prevented by the presence of a protein corona (PC) acquired during the exposure of NPs to serum proteins. Here, we develop a method to attach the PC irreversibly to the NPs, which enables us to study in detail the interaction of α-Syn and polyethylenimine-coated carboxyl-modified polystyrene NPs (PsNPs-PEI) and the role of the dynamics of the interactions. Analysis of the kinetics of fibril formation reveals that the NPs surface promotes the primary nucleation step of amyloid fibril formation without significantly affecting the elongation and fragmentation steps or the final equilibrium. Furthermore, the results show that even though α-Syn can access the surface of NPs that are precoated with a PC, due to the dynamic nature of the PC proteins, the PC nevertheless reduces the acceleratoring effect of the NPs. This effect is likely to be caused by reducing the overall amount of weakly interacting α-Syn molecules on the NP surface and the access of further α-Syn required for fibril elongation. Our experimental approach provides microscopic insight into how serum proteins can modulate the complex interplay between NPs and amyloid proteins.


Assuntos
Nanopartículas , Coroa de Proteína , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas
6.
Nat Commun ; 12(1): 7289, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911929

RESUMO

Liquid-liquid phase separation or LLPS of proteins is a field of mounting importance and the value of quantitative kinetic and thermodynamic characterization of LLPS is increasingly recognized. We present a method, Capflex, which allows rapid and accurate quantification of key parameters for LLPS: Dilute phase concentration, relative droplet size distributions, and the kinetics of droplet formation and maturation into amyloid fibrils. The binding affinity between the polypeptide undergoing LLPS and LLPS-modulating compounds can also be determined. We apply Capflex to characterize the LLPS of Human DEAD-box helicase-4 and the coacervate system ssDNA/RP3. Furthermore, we study LLPS and the aberrant liquid-to-solid phase transition of α-synuclein. We quantitatively measure the decrease in dilute phase concentration as the LLPS of α-synuclein is followed by the formation of Thioflavin-T positive amyloid aggregates. The high information content, throughput and the versatility of Capflex makes it a valuable tool for characterizing biomolecular LLPS.


Assuntos
RNA Helicases DEAD-box/química , Peptídeos/química , alfa-Sinucleína/química , Amiloide/química , Benzotiazóis/química , Cinética , Transição de Fase , Termodinâmica
7.
ACS Omega ; 6(34): 21960-21970, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497891

RESUMO

Functional amyloids are highly organized protein/peptide structures that inter alia promote biofilm formation in different bacteria. One such example is provided by a family of 20-45 residue-long peptides called phenol-soluble modulins (PSMs) from Staphylococcus aureus. External components such as eukaryotic host proteins, which alter self-assembly of bacterial amyloids, can affect the biofilm matrix. Here, we studied the effect of the highly prevalent human plasma protein fibrinogen (Fg) on fibrillation of PSMs. Fg inhibits or suppresses fibrillation of most PSMs tested (PSMα1, PSMß1, and PSMß2) except for PSMα3, whose already rapid aggregation is accelerated even further by Fg but leads to amorphous ß-rich aggregates rather than fibrils. Fg also induces PSMß2 to form amorphous aggregates and diverts PSMα1 into off-pathway oligomers which consist of both Fg and PSMα1 and cannot seed fibrillation. Peptide arrays showed that Fg bound to the N-terminus of PSMα1, while it bound to the entire length of PSMα3 (except the C terminus) and to the C-termini of PSMß1 and PSMß2. The latter peptides are all positively charged, while Fg is negatively charged at physiological pH. The positive charges complement Fg's net negative charge of -7.6 at pH 7.4. Fg's ability to inhibit PSM fibrillation reveals a potential host-defense mechanism to prevent bacterial biofilm growth and infections in the human body.

8.
Chembiochem ; 22(14): 2478-2485, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33998129

RESUMO

Chemical glycosylation of proteins is a powerful tool applied widely in biomedicine and biotechnology. However, it is a challenging undertaking and typically relies on recombinant proteins and site-specific conjugations. The scope and utility of this nature-inspired methodology would be broadened tremendously by the advent of facile, scalable techniques in glycosylation, which are currently missing. In this work, we investigated a one-pot aqueous protocol to achieve indiscriminate, surface-wide glycosylation of the surface accessible amines (lysines and/or N-terminus). We reveal that this approach afforded minimal if any change in the protein activity and recognition events in biochemical and cell culture assays, but at the same time provided a significant benefit of stabilizing proteins against aggregation and fibrillation - as demonstrated on serum proteins (albumins and immunoglobulin G, IgG), an enzyme (uricase), and proteins involved in neurodegenerative disease (α-synuclein) and diabetes (insulin). Most importantly, this highly advantageous result was achieved via a one-pot aqueous protocol performed on native proteins, bypassing the use of complex chemical methodologies and recombinant proteins.


Assuntos
Doenças Neurodegenerativas , Glicosilação , Lisina
9.
Talanta ; 211: 120722, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070572

RESUMO

Herein, an electrochemical label-free biosensor designed for the detection of glycated albumin (GA) using reduced graphene oxide/Au nanoparticles (RGO/AuNPs) modified by anti-GA aptamer. For fast and simple modification of the electrode, the aptamer chain was thiolated. Transition electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) techniques were used to the characterization of synthesized materials. Structural analysis of nanomaterials shows that graphene sheets were synthesized very fine by average thickness of 2.5 nm and Au nanoparticles distributed on the surface of graphene sheets uniformly. Cyclic voltammetry (CV) square wave voltammetry (SWV) and impedance spectroscopy (EIS) were used to electrochemical study of the decorated electrode. Electrochemical studies described the potential of fabricated rGO/AuNPs-aptamer electrode to selectively determine GA properly in buffer solution at the range of 2-10 µg mL-1 by the detection limit of 0.07 µg. mL-1 for GA.

10.
J Ophthalmic Vis Res ; 11(1): 3-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195078

RESUMO

PURPOSE: To investigate whether microRNA (MIR)-184 mutations make a substantial contribution to keratoconus (KCN) among affected Iranian patients. METHODS: A total of 47 Iranian KCN patients, diagnosed based on family history, clinical examinations using slit lamp biomicroscopy, refraction and corneal topography were enrolled in this study. The pri-miR-184 encoding gene obtained from the DNAs of all participants was amplified using polymerase chain reaction and subsequently sequenced by the Sanger dideoxynucleotide protocol. The sequences were compared to MIR184 reference sequence in order to identify sequence variations. The potential effects of a single variation observed on RNA structure was predicted. RESULTS: Only one sequence variation, +39G >T, was observed within the pri-miR-184 encoding sequence in one proband. The patient's KCN-affected sister harbored the same variation. The variation was not novel and was recently shown to be present at similar frequencies among large cohorts of KCN patients and control individuals. CONCLUSION: Mutations in MIR-184 are not a major cause of keratoconus among Iranian patients. The pri-miR-184 sequence needs to be screened in larger cohorts in order to establish whether mutations in the gene are present at low frequencies among Iranian patients.

11.
J Ethnopharmacol ; 175: 567-616, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26283471

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Complementary and alternative medicine has been increasingly used to treat chronic illnesses, such as diabetes mellitus. However, various limitations in terms of their application and efficacies exist. Furthermore, there is still much to be done to discover the right herbal medicine for diabetes. AIM OF THE STUDY: This paper aims to evaluate previous herbal studies on the management of diabetes mellitus, to address their strengths and weaknesses and propose a general framework for future studies. APPROACH AND METHODS: Data sources such as PubMed, ScienceDirect, Scopus, SpringerLink, and Wiley were searched, limited to Iran, using 36 search terms such as herbal, traditional, medicine, and phytopharmacy in combination with diabetes and related complications. Reviewed articles were evaluated regarding the use of botanical nomenclature and included information on (1) identity of plants and plant parts used, (2) the processing procedure, and (3) the extraction process. The main outcomes were extracted and then surveyed in terms of the efficacies of herbs in the management of diabetes mellitus. Then a comparative study was performed between Iranian and non-Iranian studies with respect to herbs best studied in Iran. RESULTS: Of the 82 herbs studied in Iran, only six herbs were endemic and 19 were studied in detail. Although most of the reviewed herbs were found to decrease the level of blood glucose (BG) and/or glycated hemoglobin (HbA1C) in both Iranian and non-Iranian studies, information on their pharmacological mechanisms is scarce. However, the level of HbA1C was measured in a limited number of clinical trials or animal studies. Available information on both short- and long-term use of studied herbs on diabetes related complications and functions of involved organs as well as comorbid depression and/or simultaneous changes in lifestyle is also insufficient. Furthermore, little or no information on their phytochemical, toxicological, and herb-drug interaction properties is available. It is worth noting that the efficacy of the reviewed herbs has been studied scarcely in both humans and animals regarding both Iranian and non-Iranian studies. A significant number of reviewed articles failed to cite the scientific name of herbs and include information on the processing procedure and the extraction process. CONCLUSIONS: Treatment of diabetes mellitus as a multifactorial disease using herbal medicines requires a comprehensive approach. In order to discover the right herbal medicine for the management of diabetes many other important factors than the levels of BG, HbA1C and insulin should be considered. According to our criteria, all the reviewed herbs suffered from inadequate investigation in human, animal and in vitro models in this respect, whereas they are worth investigating further. However, more research on endemic plants and the traditional history of herbal medicine is warranted. In our opinion, the pharmacological, toxicological, and phytochemical information should be obtained before clinical trials. Furthermore, information such as botanical scientific nomenclature, side effects, and toxicity will improve the quality and validity of publications in herbal research. In particular, designing a database covering all valid information about herbs and/or diseases will decrease unnecessary costs and increase the efficiency of research.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Plantas Medicinais , Animais , Pesquisa Biomédica , Humanos , Irã (Geográfico) , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...