Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(11): e15984, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37792911

RESUMO

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroproteção , Animais , Humanos , Camundongos , alfa Carioferinas/farmacologia , Cognição , Fosforilação , Transdução de Sinais
2.
Br J Pharmacol ; 180(7): 927-942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34767639

RESUMO

BACKGROUND AND PURPOSE: Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia. EXPERIMENTAL APPROACH: HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured. KEY RESULTS: RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum. CONCLUSIONS AND IMPLICATIONS: RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Ratos , Humanos , Animais , Levodopa/farmacologia , Analgésicos Opioides , Células HEK293 , Transdução de Sinais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Receptores Opioides/metabolismo , Nociceptina
3.
J Neurosci ; 39(32): 6325-6338, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182637

RESUMO

Ras/Raf/MEK/ERK (Ras-ERK) signaling has been implicated in the effects of drugs of abuse. Inhibitors of MEK1/2, the kinases upstream of ERK1/2, have been critical in defining the role of the Ras-ERK cascade in drug-dependent alterations in behavioral plasticity, but the Ras family of small GTPases has not been extensively examined in drug-related behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 1 (RasGRF1) and 2 (RasGRF2), upstream regulators of the Ras-ERK signaling cascade, on cocaine self-administration (SA) in male mice. We first established a role for Ras-ERK signaling in cocaine SA, demonstrating that pERK1/2 is upregulated following SA in C57BL/6N mice in striatum. We then compared RasGRF1 and RasGRF2 KO mouse lines, demonstrating that cocaine SA in RasGRF2 KO mice was increased relative to WT controls, whereas RasGRF1 KO and WT mice did not differ. This effect in RasGRF2 mice is likely mediated by the Ras-ERK signaling pathway, as pERK1/2 upregulation following cocaine SA was absent in RasGRF2 KO mice. Interestingly, the lentiviral knockdown of RasGRF2 in the NAc had the opposite effect to that in RasGRF2 KO mice, reducing cocaine SA. We subsequently demonstrated that the MEK inhibitor PD325901 administered peripherally prior to cocaine SA increased cocaine intake, replicating the increase seen in RasGRF2 KO mice, whereas PD325901 administered into the NAc decreased cocaine intake, similar to the effect seen following lentiviral knockdown of RasGRF2. These data indicate a role for RasGRF2 in cocaine SA in mice that is ERK-dependent, and suggest a differential effect of global versus site-specific RasGRF2 inhibition.SIGNIFICANCE STATEMENT Exposure to drugs of abuse activates a variety of intracellular pathways, and following repeated exposure, persistent changes in these pathways contribute to drug dependence. Downstream components of the Ras-ERK signaling cascade are involved in the acute and chronic effects of drugs of abuse, but their upstream mediators have not been extensively characterized. Here we show, using a combination of molecular, pharmacological, and lentiviral techniques, that the guanine nucleotide exchange factor RasGRF2 mediates cocaine self-administration via an ERK-dependent mechanism, whereas RasGRF1 has no effect on responding for cocaine. These data indicate dissociative effects of mediators of Ras activity on cocaine reward and expand the understanding of the contribution of Ras-ERK signaling to drug-taking behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/farmacologia , Corpo Estriado/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Recompensa , Fatores ras de Troca de Nucleotídeo Guanina/fisiologia , Acetilação , Animais , Benzamidas/farmacologia , Cocaína/administração & dosagem , Condicionamento Operante , Corpo Estriado/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Histonas/metabolismo , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Especificidade de Órgãos , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Autoadministração , Fatores ras de Troca de Nucleotídeo Guanina/deficiência , Fatores ras de Troca de Nucleotídeo Guanina/genética , ras-GRF1/deficiência , ras-GRF1/genética , ras-GRF1/fisiologia
4.
Sci Rep ; 8(1): 15381, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337665

RESUMO

Increasing evidence supports a close relationship between Ras-ERK1/2 activation in the striatum and L-DOPA-induced dyskinesia (LID). ERK1/2 activation by L-DOPA takes place through the crosstalk between D1R/AC/PKA/DARPP-32 pathway and NMDA/Ras pathway. Compelling genetic and pharmacological evidence indicates that Ras-ERK1/2 inhibition prevents LID onset and may even revert already established dyskinetic symptoms. However, it is currently unclear whether exacerbation of Ras-ERK1/2 activity in the striatum may further aggravate dyskinesia in experimental animal models. Here we took advantage of two genetic models in which Ras-ERK1/2 signaling is hyperactivated, the Nf1+/- mice, in which the Ras inhibitor neurofibromin is reduced, and the Ras-GRF1 overexpressing (Ras-GRF1 OE) transgenic mice in which a specific neuronal activator of Ras is enhanced. Nf1+/- and Ras-GRF1 OE mice were unilaterally lesioned with 6-OHDA and treated with an escalating L-DOPA dosing regimen. In addition, a subset of Nf1+/- hemi-parkinsonian animals was also co-treated with the Ras inhibitor lovastatin. Our results revealed that Nf1+/- and Ras-GRF1 OE mice displayed similar dyskinetic symptoms to their wild-type counterparts. This observation was confirmed by the lack of differences between mutant and wild-type mice in striatal molecular changes associated to LID (i.e., FosB, and pERK1/2 expression). Interestingly, attenuation of Ras activity with lovastatin does not weaken dyskinetic symptoms in Nf1+/- mice. Altogether, these data suggest that ERK1/2-signaling activation in dyskinetic animals is maximal and does not require further genetic enhancement in the upstream Ras pathway. However, our data also demonstrate that such a genetic enhancement may reduce the efficacy of anti-dyskinetic drugs like lovastatin.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/toxicidade , Lovastatina/farmacologia , Neurofibromina 1/fisiologia , Proteínas ras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopaminérgicos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Proteínas ras/genética
5.
Br J Pharmacol ; 175(5): 782-796, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29232769

RESUMO

BACKGROUND AND PURPOSE: We previously showed that nociceptin/orphanin FQ opioid peptide (NOP) receptor agonists attenuate the expression of levodopa-induced dyskinesia in animal models of Parkinson's disease. We now investigate the efficacy of two novel, potent and chemically distinct NOP receptor agonists, AT-390 and AT-403, to improve Parkinsonian disabilities and attenuate dyskinesia development and expression. EXPERIMENTAL APPROACH: Binding affinity and functional efficacy of AT-390 and AT-403 at the opioid receptors were determined in radioligand displacement assays and in GTPγS binding assays respectively, conducted in CHO cells. Their anti-Parkinsonian activity was evaluated in 6-hydroxydopamine hemi-lesioned rats whereas the anti-dyskinetic properties were assessed in 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa. The ability of AT-403 to inhibit the D1 receptor-induced phosphorylation of striatal ERK was investigated. KEY RESULTS: AT-390 and AT-403 selectively improved akinesia at low doses and disrupted global motor activity at higher doses. AT-403 palliated dyskinesia expression without causing sedation in a narrow therapeutic window, whereas AT-390 delayed the appearance of abnormal involuntary movements and increased their duration at doses causing sedation. AT-403 did not prevent the priming to levodopa, although it significantly inhibited dyskinesia on the first day of administration. AT-403 reduced the ERK phosphorylation induced by SKF38393 in vitro and by levodopa in vivo. CONCLUSIONS AND IMPLICATIONS: NOP receptor stimulation can provide significant albeit mild anti-dyskinetic effect at doses not causing sedation. The therapeutic window, however, varies across compounds. AT-403 could be a potent and selective tool to investigate the role of NOP receptors in vivo.


Assuntos
Acetamidas/farmacologia , Antiparkinsonianos/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Piperidinas/farmacologia , Receptores Opioides/agonistas , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/antagonistas & inibidores , Acetamidas/uso terapêutico , Animais , Antiparkinsonianos/uso terapêutico , Corpo Estriado/metabolismo , Cricetinae , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/antagonistas & inibidores , Masculino , Oxidopamina , Fosforilação/efeitos dos fármacos , Piperidinas/uso terapêutico , Ensaio Radioligante , Ratos , Receptor de Nociceptina
6.
Biol Psychiatry ; 81(3): 179-192, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587266

RESUMO

BACKGROUND: Dysregulation of Ras-extracellular signal-related kinase (ERK) signaling gives rise to RASopathies, a class of neurodevelopmental syndromes associated with intellectual disability. Recently, much attention has been directed at models bearing mild forms of RASopathies whose behavioral impairments can be attenuated by inhibiting the Ras-ERK cascade in the adult. Little is known about the brain mechanisms in severe forms of these disorders. METHODS: We performed an extensive characterization of a new brain-specific model of severe forms of RASopathies, the KRAS12V mutant mouse. RESULTS: The KRAS12V mutation results in a severe form of intellectual disability, which parallels mental deficits found in patients bearing mutations in this gene. KRAS12V mice show a severe impairment of both short- and long-term memory in a number of behavioral tasks. At the cellular level, an upregulation of ERK signaling during early phases of postnatal development, but not in the adult state, results in a selective enhancement of synaptogenesis in gamma-aminobutyric acidergic interneurons. The enhancement of ERK activity in interneurons at this critical postnatal time leads to a permanent increase in the inhibitory tone throughout the brain, manifesting in reduced synaptic transmission and long-term plasticity in the hippocampus. In the adult, the behavioral and electrophysiological phenotypes in KRAS12V mice can be temporarily reverted by inhibiting gamma-aminobutyric acid signaling but not by a Ras-ERK blockade. Importantly, the synaptogenesis phenotype can be rescued by a treatment at the developmental stage with Ras-ERK inhibitors. CONCLUSIONS: These data demonstrate a novel mechanism underlying inhibitory synaptogenesis and provide new insights in understanding mental dysfunctions associated to RASopathies.


Assuntos
Encéfalo/fisiologia , Neurônios GABAérgicos/fisiologia , Deficiência Intelectual/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sinapses/fisiologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores , Potenciação de Longa Duração , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de GABA/metabolismo , Comportamento Social , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
7.
Elife ; 52016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557444

RESUMO

Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Benzamidas/metabolismo , Peptídeos Penetradores de Células/metabolismo , Corpo Estriado/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/metabolismo , Camundongos
8.
Ann Clin Transl Neurol ; 2(6): 662-78, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26125041

RESUMO

OBJECTIVE: Recent findings have shown that pharmacogenetic manipulations of the Ras-ERK pathway provide a therapeutic means to tackle l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID). First, we investigated whether a prolonged l-DOPA treatment differentially affected ERK signaling in medium spiny neurons of the direct pathway (dMSNs) and in cholinergic aspiny interneurons (ChIs) and assessed the role of Ras-GRF1 in both subpopulations. Second, using viral-assisted technology, we probed Ras-GRF1 and Ras-GRF2 as potential targets in this pathway. We investigated how selective blockade of striatal Ras-GRF1 or Ras-GRF2 expression impacted on LID (induction, maintenance, and reversion) and its neurochemical correlates. METHODS: We used both Ras-GRF1 knockout mice and lentiviral vectors (LVs) delivering short-hairpin RNA sequences (shRNAs) to obtain striatum-specific gene knockdown of Ras-GRF1 and Ras-GRF2. The consequences of these genetic manipulations were evaluated in the 6-hydroxydopamine mouse model of Parkinson's disease. Escalating doses of l-DOPA were administered and then behavioral analysis with immunohistochemical assays and in vivo microdialysis were performed. RESULTS: Ras-GRF1 was found essential in controlling ERK signaling in dMSNs, but its ablation did not prevent ERK activation in ChIs. Moreover, striatal injection of LV-shRNA/Ras-GRF1 attenuated dyskinesia development and ERK-dependent signaling, whereas LV-shRNA/Ras-GRF2 was without effect, ruling out the involvement of Ras-GRF2 in LID expression. Accordingly, Ras-GRF1 but not Ras-GRF2 striatal gene-knockdown reduced l-DOPA-induced GABA and glutamate release in the substantia nigra pars reticulata, a neurochemical correlate of dyskinesia. Finally, inactivation of Ras-GRF1 provided a prolonged anti-dyskinetic effect for up to 7 weeks and significantly attenuated symptoms in animals with established LID. INTERPRETATION: Our results suggest that Ras-GRF1 is a promising target for LID therapy based on Ras-ERK signaling inhibition in the striatum.

9.
Prog Neurobiol ; 132: 96-168, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26209473

RESUMO

Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.


Assuntos
Antiparkinsonianos/efeitos adversos , Sistema Nervoso Central/fisiopatologia , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/efeitos adversos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Doença de Parkinson/tratamento farmacológico
10.
Biol Psychiatry ; 77(2): 106-15, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24844602

RESUMO

BACKGROUND: Bidirectional long-term plasticity at the corticostriatal synapse has been proposed as a central cellular mechanism governing dopamine-mediated behavioral adaptations in the basal ganglia system. Balanced activity of medium spiny neurons (MSNs) in the direct and the indirect pathways is essential for normal striatal function. This balance is disrupted in Parkinson's disease and in l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID), a common motor complication of current pharmacotherapy of Parkinson's disease. METHODS: Electrophysiological recordings were performed in mouse cortico-striatal slice preparation. Synaptic plasticity, such as long-term potentiation (LTP) and depotentiation, was investigated. Specific pharmacological inhibitors or genetic manipulations were used to modulate the Ras-extracellular signal-regulated kinase (Ras-ERK) pathway, a signal transduction cascade implicated in behavioral plasticity, and synaptic activity in different subpopulations of striatal neurons was measured. RESULTS: We found that the Ras-ERK pathway, is not only essential for long-term potentiation induced with a high frequency stimulation protocol (HFS-LTP) in the dorsal striatum, but also for its reversal, synaptic depotentiation. Ablation of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal activator of Ras proteins, causes a specific loss of HFS-LTP in the medium spiny neurons in the direct pathway without affecting LTP in the indirect pathway. Analysis of LTP in animals with unilateral 6-hydroxydopamine lesions (6-OHDA) rendered dyskinetic with chronic L-DOPA treatment reveals a complex, Ras-GRF1 and pathway-independent, apparently stochastic involvement of ERK. CONCLUSIONS: These data not only demonstrate a central role for Ras-ERK signaling in striatal LTP, depotentiation, and LTP restored after L-DOPA treatment but also disclose multifaceted synaptic adaptations occurring in response to dopaminergic denervation and pulsatile administration of L-DOPA.


Assuntos
Corpo Estriado/fisiopatologia , Discinesia Induzida por Medicamentos/fisiopatologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Plasticidade Neuronal/fisiologia , ras-GRF1/metabolismo , Animais , Antiparkinsonianos/toxicidade , Butadienos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Levodopa/toxicidade , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nitrilas/farmacologia , Oxidopamina , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Técnicas de Cultura de Tecidos , ras-GRF1/genética
11.
Methods Mol Biol ; 1120: 131-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24470023

RESUMO

Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index that we present here for the first time, the recognition index (RI), which quantifies the ability of an animal to recognize a same object at different time points and that, by taking into account the basal individual preferences displayed during the training, can give a more accurate measure of an animal's actual recognition memory.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Testes Neuropsicológicos , Reconhecimento Psicológico/fisiologia , Proteínas ras/metabolismo , Criação de Animais Domésticos , Animais , Masculino , Camundongos
12.
Ann Neurol ; 74(1): 140-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23494678

RESUMO

Dopamine dysregulation syndrome shares some core behavioral features with psychostimulant addiction, suggesting that dopamine replacement therapy can acquire psychostimulantlike properties in some patients with Parkinson disease (PD). We here report strong experimental evidence supporting this hypothesis in an α-synuclein rat model of PD. Although levodopa had no effect in controls, it acquired 2 prominent psychostimulantlike properties in Parkinsonian rats: (1) it produced intense reward on its own and in parallel (2) decreased interest in other nondrug reward. These 2 effects may combine to explain the addictive use of levodopa after loss of midbrain dopamine neurons in some PD patients.


Assuntos
Antiparkinsonianos/uso terapêutico , Neurônios Dopaminérgicos/patologia , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Substância Negra/patologia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Antiparkinsonianos/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Masculino , Mutação/genética , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Ratos , Ratos Wistar , Recompensa , Sacarina/administração & dosagem , Edulcorantes/administração & dosagem , Paladar/efeitos dos fármacos , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade
13.
J Neurosci ; 32(46): 16106-19, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152595

RESUMO

In the present study we investigated whether the neuropeptide nociceptin/orphanin FQ (N/OFQ), previously implicated in the pathogenesis of Parkinson's disease, also affects L-DOPA-induced dyskinesia. In striatal slices of naive rodents, N/OFQ (0.1-1 µm) prevented the increase of ERK phosphorylation and the loss of depotentiation of synaptic plasticity induced by the D1 receptor agonist SKF38393 in spiny neurons. In vivo, exogenous N/OFQ (0.03-1 nmol, i.c.v.) or a synthetic N/OFQ receptor agonist given systemically (0.01-1 mg/Kg) attenuated dyskinesias expression in 6-hydroxydopamine hemilesioned rats primed with L-DOPA, without causing primary hypolocomotive effects. Conversely, N/OFQ receptor antagonists worsened dyskinesia expression. In vivo microdialysis revealed that N/OFQ prevented dyskinesias simultaneously with its neurochemical correlates such as the surge of nigral GABA and glutamate, and the reduction of thalamic GABA. Regional microinjections revealed that N/OFQ attenuated dyskinesias more potently and effectively when microinjected in striatum than substantia nigra (SN) reticulata, whereas N/OFQ receptor antagonists were ineffective in striatum but worsened dyskinesias when given in SN. Quantitative autoradiography showed an increase in N/OFQ receptor binding in striatum and a reduction in SN of both unprimed and dyskinetic 6-hydroxydopamine rats, consistent with opposite adaptive changes of N/OFQ transmission. Finally, the N/OFQ receptor synthetic agonist also reduced dyskinesia expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated dyskinetic macaques without affecting the global parkinsonian score. We conclude that N/OFQ receptor agonists may represent a novel strategy to counteract L-DOPA-induced dyskinesias. Their action is possibly mediated by upregulated striatal N/OFQ receptors opposing the D1 receptor-mediated overactivation of the striatonigral direct pathway.


Assuntos
Antidiscinéticos , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Peptídeos Opioides/agonistas , Animais , Autorradiografia , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Microinjeções , Peptídeos Opioides/antagonistas & inibidores , Peptídeos Opioides/genética , Oxidopamina/toxicidade , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo , Nociceptina
14.
J Neurosci ; 32(2): 681-91, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22238104

RESUMO

Aberrant membrane localization of dopamine D(1) receptor (D1R) is associated with L-DOPA-induced dyskinesia (LID), a major complication of L-DOPA treatment in Parkinson's disease (PD). Since the proteasome plays a central role in modulating neuronal response through regulation of neurotransmitter receptor intraneuronal fate, we hypothesized that the ubiquitine-proteasome proteolytic pathway could be impaired in LID. Those LIDs are actually associated with a striatum-specific decrease in proteasome catalytic activity and accumulation of polyubiquitinated proteins in experimental rodent and monkey parkinsonism. We then demonstrated that such decreased proteasome catalytic activity (1) results from D1R activation and (2) feed-back the D1R abnormal trafficking, i.e., its exaggerated cell surface abundance. We further showed that the genetic invalidation of the E3 ubiquitin-protein ligase parkin PD gene leads to exaggerated abnormal involuntary movements compared with wild-type mice. We thus established in an unprecedented series of experimental models that impairment of the ubiquitine-proteasome system at specific nodes (E3 ligase parkin, polyubiquitination, proteasome catalytic activity) leads to the same phenomenon, i.e., aberrant behavioral response to dopamine replacement therapy in PD, highlighting the intimate interplay between dopamine receptor and proteasome activity in a nondegenerative context.


Assuntos
Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Receptores de Dopamina D1/agonistas , Animais , Modelos Animais de Doenças , Agonistas de Dopamina/toxicidade , Discinesia Induzida por Medicamentos/fisiopatologia , Feminino , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Transtornos Parkinsonianos/enzimologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/fisiologia
15.
Front Behav Neurosci ; 5: 79, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22131969

RESUMO

The role of Ras-ERK signaling in behavioral plasticity is well established. Inhibition studies using the blood-brain barrier permeable drug SL327 have conclusively demonstrated that this neuronal cell signaling cascade is a crucial component of the synaptic machinery implicated in the formation of various forms of long-term memory, from spatial learning to fear and operant conditioning. However, abnormal Ras-ERK signaling has also been linked to a number of neuropsychiatric conditions, including mental retardation syndromes ("RASopathies"), drug addiction, and l-DOPA induced dyskinesia (LID). The work recently done on these brain disorders has pointed to previously underappreciated roles of Ras-ERK in specific subsets of neurons, like GABAergic interneurons of the hippocampus or the cortex, as well as in the medium spiny neurons of the striatum. Here we will highlight the open questions related to Ras-ERK signaling in these behavioral manifestations and propose crucial experiments for the future.

16.
Front Behav Neurosci ; 5: 78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164138

RESUMO

Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning Brambilla's mice with a third mouse line (GENA53) in which a non-sense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in Brambilla's mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdala functions but possibly to some distinct hippocampal connections specific to contextual learning.

17.
Proc Natl Acad Sci U S A ; 107(50): 21824-9, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21115823

RESUMO

L-dopa-induced dyskinesia (LID) is a common debilitating complication of dopamine replacement therapy in Parkinson's disease. Recent evidence suggests that LID may be linked causally to a hyperactivation of the Ras-ERK signaling cascade in the basal ganglia. We set out to determine whether specific targeting of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a brain-specific activator of the Ras-ERK pathway, may provide a therapy for LID. On the rodent abnormal involuntary movements scale, Ras-GRF1-deficient mice were significantly resistant to the development of dyskinesia during chronic L-dopa treatment. Furthermore, in a nonhuman primate model of LID, lentiviral vectors expressing dominant negative forms of Ras-GRF1 caused a dramatic reversion of dyskinesia severity leaving intact the therapeutic effect of L-dopa. These data reveal the central role of Ras-GRF1 in governing striatal adaptations to dopamine replacement therapy and validate a viable treatment for LID based on intracellular signaling modulation.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/farmacologia , Transdução de Sinais/fisiologia , ras-GRF1/metabolismo , Animais , Corpo Estriado/citologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , ras-GRF1/genética
18.
Front Behav Neurosci ; 3: 29, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19826621

RESUMO

The striatum participates in multiple forms of behavioral adaptation, including habit formation, other forms of procedural memory, and short- and long-term responses to drugs of abuse. The cyclic-AMP response element binding protein (CREB) family of transcription factors has been implicated in various forms of behavioral plasticity, but its role in the dorsal portion of the striatum-has been little explored. We previously showed that in transgenic mice in which CREB function is inhibited in the dorsal striatum, bidirectional synaptic plasticity and certain forms of long-term procedural memory are impaired. Here we show, in startling contrast, that inhibition of striatal CREB facilitates cocaine- and morphine-place conditioning and enhances locomotor sensitization to cocaine. These findings propose CREB as a positive regulator of dorsal striatum-dependent procedural learning but a negative regulator of drug-related learning.

19.
Biol Psychiatry ; 66(8): 758-68, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19446794

RESUMO

BACKGROUND: Ras-extracellular signal-regulated kinase (Ras-ERK) signaling is central to the molecular machinery underlying cognitive functions. In the striatum, ERK1/2 kinases are co-activated by glutamate and dopamine D1/5 receptors, but the mechanisms providing such signaling integration are still unknown. The Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal specific activator of Ras-ERK signaling, is a likely candidate for coupling these neurotransmitter signals to ERK kinases in the striatonigral medium spiny neurons (MSN) and for modulating behavioral responses to drug abuse such as cocaine. METHODS: We used genetically modified mouse mutants for Ras-GRF1 as a source of primary MSN cultures and organotypic slices, to perform both immunoblot and immunofluorescence studies in response to glutamate and dopamine receptor agonists. Mice were also subjected to behavioral and immunohistochemical investigations upon treatment with cocaine. RESULTS: Phosphorylation of ERK1/2 in response to glutamate, dopamine D1 agonist, or both stimuli simultaneously is impaired in Ras-GRF1-deficient striatal cells and organotypic slices of the striatonigral MSN compartment. Consistently, behavioral responses to cocaine are also affected in mice deficient for Ras-GRF1 or overexpressing it. Both locomotor sensitization and conditioned place preference are significantly attenuated in Ras-GRF1-deficient mice, whereas a robust facilitation is observed in overexpressing transgenic animals. Finally, we found corresponding changes in ERK1/2 activation and in accumulation of FosB/DeltaFosB, a well-characterized marker for long-term responses to cocaine, in MSN from these animals. CONCLUSIONS: These results strongly implicate Ras-GRF1 in the integration of the two main neurotransmitter inputs to the striatum and in the maladaptive modulation of striatal networks in response to cocaine.


Assuntos
Comportamento Animal/fisiologia , Cocaína/farmacologia , Corpo Estriado/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , ras-GRF1/genética , ras-GRF1/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Cocaína/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
J Clin Invest ; 116(11): 3070-82, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17080200

RESUMO

Metachromatic leukodystrophy (MLD) is a demyelinating lysosomal storage disorder for which new treatments are urgently needed. We previously showed that transplantation of gene-corrected hematopoietic stem progenitor cells (HSPCs) in presymptomatic myeloablated MLD mice prevented disease manifestations. Here we show that HSC gene therapy can reverse neurological deficits and neuropathological damage in affected mice, thus correcting an overt neurological disease. The efficacy of gene therapy was dependent on and proportional to arylsulfatase A (ARSA) overexpression in the microglia progeny of transplanted HSPCs. We demonstrate a widespread enzyme distribution from these cells through the CNS and a robust cross-correction of neurons and glia in vivo. Conversely, a peripheral source of enzyme, established by transplanting ARSA-overexpressing hepatocytes from transgenic donors, failed to effectively deliver the enzyme to the CNS. These results indicate that the recruitment of gene-modified, enzyme-overexpressing microglia makes the enzyme bioavailable to the brain and makes therapeutic efficacy and disease correction attainable. Overall, our data provide a strong rationale for implementing HSPC gene therapy in MLD patients.


Assuntos
Terapia Genética/efeitos adversos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Animais , Comportamento Animal , Diferenciação Celular , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurofisiologia/estatística & dados numéricos , Sulfoglicoesfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...