Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(13): 137003, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451579

RESUMO

We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.

2.
Phys Rev Lett ; 105(16): 167005, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21231000

RESUMO

We probe the local quasiparticles density of states in micron-sized SmFeAsO(1-x)F(x) single crystals by means of scanning tunnelling spectroscopy. Spectral features resemble those of cuprates, particularly a dip-hump-like structure developed at energies larger than the gap that can be ascribed to the coupling of quasiparticles to a collective mode, quite likely a resonant spin mode. The energy of the collective mode revealed in our study decreases when the pairing strength increases. Our findings support spin-fluctuation-mediated pairing in pnictides.

3.
Phys Rev Lett ; 103(22): 227001, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-20366120

RESUMO

We have used scanning tunneling spectroscopy to investigate short-length electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+delta) (Bi-2223). We show that the superconducting gap and the energy Omega(dip), defined as the difference between the dip minimum and the gap, are both modulated in space following the lattice superstructure and are locally anticorrelated. Based on fits of our data to a microscopic strong-coupling model, we show that Omega(dip) is an accurate measure of the collective-mode energy in Bi-2223. We conclude that the collective mode responsible for the dip is a local excitation with a doping dependent energy and is most likely the (pi, pi) spin resonance.

4.
Phys Rev Lett ; 103(25): 257001, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20366275

RESUMO

Using scanning tunneling microscopy at 400 mK, we have obtained maps of around 100 vortices in SnMo(6)S(8) from 2-9 T. The orientational and positional disorder at 5 and 9 T show that these are the first large-scale images of a vortex glass. At higher temperature a magnetization peak effect is observed, whose upper boundary coincides with a lambda anomaly in the specific heat. Our data favor a kinetic glass description of the vortex melting transition, indicating that vortex topological disorder persists at fields and temperatures far below the peak effect in low-T(c) superconductors.

5.
Proc Natl Acad Sci U S A ; 102(11): 3898-902, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16576763

RESUMO

We have investigated the response of 3D Bi(2)Sr(2)CaCu(2)O(8) vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye-Waller factor.

6.
Phys Rev Lett ; 90(8): 087004, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633453

RESUMO

Bitter decoration and magneto-optical studies reveal that in heavy-ion irradiated superconductors, a "porous" vortex matter is formed when vortices outnumber columnar defects. In this state ordered vortex crystallites are embedded in the "pores" of a rigid matrix of vortices pinned on columnar defects. The crystallites melt through a first-order transition while the matrix remains solid. The melting temperature increases with density of columnar defects and eventually turns into a continuous transition. At high temperatures a sharp kink in the melting line is found, signaling an abrupt change from crystallite melting to melting of the rigid matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...