Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadi2042, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507479

RESUMO

The integration of heterogeneous modular units for building large-scale quantum networks requires engineering mechanisms that allow suitable transduction of quantum information. Magnon-based transducers are especially attractive due to their wide range of interactions and rich nonlinear dynamics, but most of the work to date has focused on linear magnon transduction in the traditional system composed of yttrium iron garnet and diamond, two materials with difficult integrability into wafer-scale quantum circuits. In this work, we present a different approach by using wafer-compatible materials to engineer a hybrid transducer that exploits magnon nonlinearities in a magnetic microdisc to address quantum spin defects in silicon carbide. The resulting interaction scheme points to the unique transduction behavior that can be obtained when complementing quantum systems with nonlinear magnonics.

2.
Nat Commun ; 14(1): 7010, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919284

RESUMO

Efficient generation and control of spin currents launched by terahertz (THz) radiation with subsequent ultrafast spin-to-charge conversion is the current challenge for the next generation of high-speed communication and data processing units. Here, we demonstrate that THz light can efficiently drive coherent angular momentum transfer in nanometer-thick ferromagnet/heavy-metal heterostructures. This process is non-resonant and does neither require external magnetic fields nor cryogenics. The efficiency of this process is more than one order of magnitude higher as compared to the recently observed THz-induced spin pumping in MnF2 antiferromagnet. The coherently driven spin currents originate from the ultrafast spin Seebeck effect, caused by a THz-induced temperature imbalance in electronic and magnonic temperatures and fast relaxation of the electron-phonon system. Owing to the fact that the electron-phonon relaxation time is comparable with the period of a THz wave, the induced spin current results in THz second harmonic generation and THz optical rectification, providing a spintronic basis for THz frequency mixing and rectifying components.

3.
Nat Commun ; 14(1): 3954, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402733

RESUMO

Magnons are elementary excitations in magnetic materials and undergo nonlinear multimode scattering processes at large input powers. In experiments and simulations, we show that the interaction between magnon modes of a confined magnetic vortex can be harnessed for pattern recognition. We study the magnetic response to signals comprising sine wave pulses with frequencies corresponding to radial mode excitations. Three-magnon scattering results in the excitation of different azimuthal modes, whose amplitudes depend strongly on the input sequences. We show that recognition rates as high as 99.4% can be attained for four-symbol sequences using the scattered modes, with strong performance maintained with the presence of amplitude noise in the inputs.

4.
Nat Commun ; 14(1): 1491, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932066

RESUMO

Chiral effects originate from the lack of inversion symmetry within the lattice unit cell or sample's shape. Being mapped onto magnetic ordering, chirality enables topologically non-trivial textures with a given handedness. Here, we demonstrate the existence of a static 3D texture characterized by two magnetochiral parameters being magnetic helicity of the vortex and geometrical chirality of the core string itself in geometrically curved asymmetric permalloy cap with a size of 80 nm and a vortex ground state. We experimentally validate the nonlocal chiral symmetry breaking effect in this object, which leads to the geometric deformation of the vortex string into a helix with curvature 3 µm-1 and torsion 11 µm-1. The geometric chirality of the vortex string is determined by the magnetic helicity of the vortex texture, constituting coupling of two chiral parameters within the same texture. Beyond the vortex state, we anticipate that complex curvilinear objects hosting 3D magnetic textures like curved skyrmion tubes and hopfions can be characterized by multiple coupled magnetochiral parameters, that influence their statics and field- or current-driven dynamics for spin-orbitronics and magnonics.

5.
Sci Rep ; 13(1): 764, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641510

RESUMO

1D spin-wave conduits are envisioned as nanoscale components of magnonics-based logic and computing schemes for future generation electronics. À-la-carte methods of versatile control of the local magnetization dynamics in such nanochannels are highly desired for efficient steering of the spin waves in magnonic devices. Here, we present a study of localized dynamical modes in 1-[Formula: see text]m-wide permalloy conduits probed by microresonator ferromagnetic resonance technique. We clearly observe the lowest-energy edge mode in the microstrip after its edges were finely trimmed by means of focused Ne[Formula: see text] ion irradiation. Furthermore, after milling the microstrip along its long axis by focused ion beams, creating consecutively [Formula: see text]50 and [Formula: see text]100 nm gaps, additional resonances emerge and are attributed to modes localized at the inner edges of the separated strips. To visualize the mode distribution, spatially resolved Brillouin light scattering microscopy was used showing an excellent agreement with the ferromagnetic resonance data and confirming the mode localization at the outer/inner edges of the strips depending on the magnitude of the applied magnetic field. Micromagnetic simulations confirm that the lowest-energy modes are localized within [Formula: see text]15-nm-wide regions at the edges of the strips and their frequencies can be tuned in a wide range (up to 5 GHz) by changing the magnetostatic coupling (i.e., spatial separation) between the microstrips.

6.
Nat Commun ; 13(1): 6587, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329023

RESUMO

We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.


Assuntos
Campos Magnéticos , Magnetismo , Humanos
7.
Nat Commun ; 13(1): 6745, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347852

RESUMO

Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 µB nm-2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.

8.
Sci Rep ; 12(1): 14809, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045141

RESUMO

The ferromagnetic resonance of a disordered A2 Fe60Al40 ferromagnetic stripe, of dimensions 5 µm × 1 µm × 32 nm, has been observed in two vastly differing surroundings: in the first case, the ferromagnetic region was surrounded by ordered B2 Fe60Al40, and in the second case it was free standing, adhering only to the oxide substrate. The embedded ferromagnet possesses a periodic magnetic domain structure, which transforms to a single domain structure in the freestanding case. The two cases differ in their dynamic response, for instance, the resonance field for the uniform (k = 0) mode at ~ 14 GHz excitation displays a shift from 209 to 194 mT, respectively for the embedded and freestanding cases, with the external magnetic field applied along the long axis. The resonant behavior of a microscopic ferromagnet can thus be finely tailored via control of its near-interfacial surrounding.

9.
Small ; 18(17): e2201228, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344270

RESUMO

Thin films of the magnetoelectric insulator α-Cr2 O3 are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr2 O3 films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small-volume defects and their complexes is studied on the magnetic properties of Cr2 O3 thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen-vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub-micrometer range. Despite their influence on the domain configuration, neither small open-volume defects nor grain boundaries in Cr2 O3 thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin-orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.

10.
Adv Mater ; 33(12): e2005521, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533129

RESUMO

Highly compliant electronics, naturally conforming to human skin, represent a paradigm shift in the interplay with the surroundings. Solution-processable printing technologies are yet to be developed to comply with requirements to mechanical conformability of on-skin appliances. Here, it is demonstrated that high-performance spintronic elements can be printed on ultrathin 3 µm thick polymeric foils enabling the mechanically imperceptible printed magnetoelectronics, which can adapt to the periodic buckling surface to be biaxially stretched over 100%. They constitute the first example of printed and stretchable giant magnetoresistive sensors, revealing 2 orders of magnitude improvements in mechanical stability and sensitivity at small magnetic fields, compared to the state-of-the-art printed magnetoelectronics. The key enabler of this performance enhancement is the use of elastomeric triblock copolymers as a binder for the magnetosensitive paste. Even when bent to a radius of 16 µm, the sensors printed on ultrathin foils remain intact and possess unmatched sensitivity for printed magnetoelectronics of 3 T-1 in a low magnetic field of 0.88 mT. The compliant printed sensors can be used as components of on-skin interactive electronics as it is demonstrated with a touchless control of virtual objects including zooming in and out of interactive maps and scrolling through electronic documents.

11.
Appl Phys Lett ; 117(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154594

RESUMO

We report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured Co25Fe75 waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad range of excitation powers and detect a decrease of the attenuation length at high powers. This is consistent with the onset of nonlinear four-magnon scattering. Hence, it is critical to stay in the linear regime, when deriving damping parameters from the magnon propagation length. Otherwise, the intrinsic nonlinearity of magnetization dynamics may lead to a misinterpretation of magnon propagation lengths and, thus, to incorrect values of the magnetic damping of the system.

12.
Nano Lett ; 20(11): 8157-8162, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32986440

RESUMO

Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin-orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically achiral one-dimensional (1D) curvilinear antiferromagnet behaves as a chiral helimagnet with geometrically tunable Dzyaloshinskii-Moriya interaction (DMI) and orientation of the Néel vector. The curvature-induced DMI results in the hybridization of spin wave modes and enables a geometrically driven local minimum of the low-frequency branch. This positions curvilinear 1D antiferromagnets as a novel platform for the realization of geometrically tunable chiral antiferromagnets for antiferromagnetic spin-orbitronics and fundamental discoveries in the formation of coherent magnon condensates in the momentum space.

13.
Nano Lett ; 20(9): 6572-6581, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786943

RESUMO

We realize an ultracompact nanocytometer for real-time impedimetric detection and classification of subpopulations of living cells. Nanoscopic nanowires in a microfluidic channel act as nanocapacitors and measure in real time the change of the amplitude and phase of the output voltage and, thus, the electrical properties of living cells. We perform the cell classification in the human peripheral blood (PBMC) and demonstrate for the first time the possibility to discriminate monocytes and subpopulations of lymphocytes in a label-free format. Further, we demonstrate that the PBMC of acute myeloid leukemia and healthy samples grant the label free identification of the disease. Using the algorithm based on machine learning, we generated specific data patterns to discriminate healthy donors and leukemia patients. Such a solution has the potential to improve the traditional diagnostics approaches with respect to the overall cost and time effort, in a label-free format, and restrictions of the complex data analysis.


Assuntos
Leucemia Mieloide Aguda , Leucócitos Mononucleares , Humanos , Leucemia Mieloide Aguda/diagnóstico , Monócitos , Projetos Piloto
14.
ACS Omega ; 5(32): 20609-20617, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832814

RESUMO

Magnetofluidics is a dynamic research field, which requires novel sensor solutions to boost the detection limit of tiny quantities of magnetized objects. Here, we present a sensing strategy relying on planar Hall effect sensors in droplet-based micro-magnetofluidics for the detection of a multiphase liquid flow, i.e., superparamagnetic aqueous droplets in an oil carrier phase. The high resolution of the sensor allows the detection of nanoliter-sized superparamagnetic droplets with a concentration of 0.58 mg/cm3, even when they are biased in a geomagnetic field only. The limit of detection can be boosted another order of magnitude, reaching 0.04 mg/cm3 (1.4 million particles in a single 100 nL droplet) when a magnetic field of 5 mT is applied to bias the droplets. With this performance, our sensing platform outperforms the state-of-the-art solutions in droplet-based micro-magnetofluidics by a factor of 100. This allows us to detect ferrofluid droplets in clinically and biologically relevant concentrations and even below without the need of externally applied magnetic fields. These results open the route for new strategies of the utilization of ferrofluids in microfluidic geometries in, e.g., bio(-chemical) or medical applications.

15.
ACS Appl Mater Interfaces ; 12(24): 27812-27818, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32442364

RESUMO

Nanoscale, low-phase-noise, tunable transmitter-receiver links are key for enabling the progress of wireless communication. We demonstrate that vortex-based spin-torque nano-oscillators, which are intrinsically low-noise devices because of their topologically protected magnetic structure, can achieve frequency tunability when submitted to local ion implantation. In the experiments presented here, the gyrotropic mode is excited with spin-polarized alternating currents and anisotropic magnetoresistance measurements yield discrete frequencies from a single device. Indeed, chromium-implanted regions of permalloy disks exhibit different saturation magnetization than neighboring, non-irradiated areas, and thus different resonance frequency, corresponding to the specific area where the core is gyrating. Our study proves that such devices can be fabricated without the need for further lithographical steps, suggesting ion irradiation can be a viable and cost-effective fabrication method for densely packed networks of oscillators.

16.
Nano Lett ; 20(5): 3642-3650, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32250635

RESUMO

Arrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices. Via block copolymer templating, we produce Ni75Fe25 single-gyroid and double-gyroid (an inversion pair of single-gyroids) nanostructures with a 42 nm unit cell and 11 nm diameter struts, comparable to the exchange length in Ni-Fe. We visualize their magnetization distributions via off-axis electron holography with nanometer spatial resolution and interpret the patterns using finite-element micromagnetic simulations. Our results suggest an intricate, frustrated remanent state which is ferromagnetic but without a unique equilibrium configuration, opening new possibilities for collective phenomena in magnetism, including 3D magnonic crystals and unconventional computing.

17.
ACS Appl Mater Interfaces ; 12(8): 9858-9864, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32009381

RESUMO

Interfaces separating ferromagnetic (FM) layers from non-ferromagnetic layers offer unique properties due to spin-orbit coupling and symmetry breaking, yielding effects such as exchange bias, perpendicular magnetic anisotropy, spin-pumping, spin-transfer torques, and conversion between charge and spin currents and vice versa. These interfacial phenomena play crucial roles in magnetic data storage and transfer applications, which require the formation of FM nanostructures embedded in non-ferromagnetic matrices. Here, we investigate the possibility of creating such nanostructures by ion irradiation. We study the effect of lateral confinement on the ion-irradiation-induced reduction of nonmagnetic metal oxides (e.g., antiferro- or paramagnetic) to form ferromagnetic metals. Our findings are later exploited to form three-dimensional magnetic interfaces between Co, CoO, and Pt by spatial-selective irradiation of CoO/Pt multilayers. We demonstrate that the mechanical displacement of O atoms plays a crucial role in the reduction from insulating, non-ferromagnetic cobalt oxides to metallic cobalt. Metallic cobalt yields both perpendicular magnetic anisotropy in the generated Co/Pt nanostructures and, at low temperatures, exchange bias at vertical interfaces between Co and CoO. If pushed to the limit of ion-irradiation technology, this approach could, in principle, enable the creation of densely packed, atomic-scale ferromagnetic point-contact spin-torque oscillator (STO) networks or conductive channels for current-confined-path-based current perpendicular-to-plane giant magnetoresistance read heads.

18.
Langmuir ; 36(25): 7091-7099, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32011149

RESUMO

Synthetic nano- and micromotors interact with each other and their surroundings in a complex manner. Here, we report on the anisotropy of active-passive particle interaction in a soft matter system containing an immobile yet photochemical Ag/AgCl-based Janus particle embedded in a dense matrix of passive beads in pure water. The asymmetry in the chemical gradient around the Janus particle, triggered upon visible light illumination, distorts the isotropy of the surrounding electric potential and results in the repulsion of adjacent passive beads to a certain distance away from the Janus particle. This exclusion effect is found to be anisotropic with larger distances to passive beads in front of the Ag/AgCl cap of the Janus particle. We provide insight into this phenomenon by performing the angular analysis of the radii of exclusion and tracking their time evolution at the level of a single bead. Our study provides a novel fundamental insight into the collective behavior of a complex mixture of active and passive particles and is relevant for various application scenarios, e.g., particle transport at micro- and nanoscale and local chemical sensing.

19.
RSC Adv ; 10(24): 14386-14395, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498452

RESUMO

Atomic scale defects generated using focused ion as well as laser beams can activate ferromagnetism in initially non-ferromagnetic B2 ordered alloy thin film templates. Such defects can be induced locally, confining the ferromagnetic objects within well-defined nanoscale regions. The characterization of these atomic scale defects is challenging, and the mechanism for the emergence of ferromagnetism due to sensitive lattice disordering is unclear. Here we directly probe a variety of microscopic defects in systematically disordered B2 FeRh thin films that are initially antiferromagnetic and undergo a thermally-driven isostructural phase transition to a volatile ferromagnetic state. We show that the presence of static disorder i.e., the slight deviations of atoms from their equilibrium sites is sufficient to induce a non-volatile ferromagnetic state at room temperature. A static mean square relative displacement of 9 × 10-4 Å-2 is associated with the occurrence of non-volatile ferromagnetism and replicates a snapshot of the dynamic disorder observed in the thermally-driven ferromagnetic state. The equivalence of static and dynamic disorder with respect to the ferromagnetic behavior can provide insights into the emergence of ferromagnetic coupling as well as achieving tunable magnetic properties through defect manipulations in alloys.

20.
Small ; 15(49): e1904315, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709700

RESUMO

The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...