Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 154: 106550, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701966

RESUMO

BACKGROUND: Post myocardial infarction (MI) ventricles contain fibrotic tissue and may have disrupted electrical properties, both of which predispose to an increased risk of life-threatening arrhythmias. Application of epicardial patches obtained from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a potential long-term therapy to treat heart failure resulting from post MI remodelling. However, whether the introduction of these patches is anti- or pro-arrhythmic has not been studied. METHODS: We studied arrhythmic risk using in silico engineered heart tissue (EHT) patch engraftment on human post-MI ventricular models. Two patient models were studied, including one with a large dense scar and one with an apparent channel of preserved viability bordered on both sides by scar. In each heart model a virtual EHT patch was introduced as a layer of viable tissue overlying the scarred area, with hiPSC-CMs electrophysiological properties. The incidence of re-entrant and sustained activation in simulations with and without EHT patches was assessed and the arrhythmia inducibility compared in the context of different EHT patch properties (conduction velocity (CV) and action potential duration (APD)). The impact of the EHT patch on the likelihood of focal ectopic impulse propagation was estimated by assessing the minimum stimulus strength and duration required to generate a propagating impulse in the scar border zone (BZ) with and without patch. RESULTS: We uncovered two main mechanisms by which ventricular tachycardia (VT) risk could be either augmented or attenuated by the interaction of the patch with the tissue. In the case of isthmus-related VT, our simulations predict that EHT patches can prevent the induction of VT when the, generally longer, hiPSC-CMs APD is reduced towards more physiological values. In the case of large dense scar, we found that, an EHT patch with CV similar to the host myocardium does not promote VT, while EHT patches with lower CV increase the risk of VT, by promoting both non-sustained and sustained re-entry. Finally, our simulations indicate that electrically coupled EHT patches reduce the likelihood of propagation of focal ectopic impulses. CONCLUSIONS: The introduction of EHT patches as a treatment for heart failure has the potential to augment or attenuate the risk of ventricular arrhythmias, and variations in the anatomic configuration of the substrate, the functional properties of the BZ and the electrophysiologic properties of the patch itself will determine the overall impact. Planning for delivery of this therapy will need to consider the possible impact on arrhythmia.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Taquicardia Ventricular , Humanos , Cicatriz , Arritmias Cardíacas , Miocárdio , Miócitos Cardíacos/patologia , Insuficiência Cardíaca/patologia
2.
PLoS Comput Biol ; 18(4): e1010030, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363778

RESUMO

Application of epicardial patches constructed from human-induced pluripotent stem cell- derived cardiomyocytes (hiPSC-CMs) has been proposed as a long-term therapy to treat scarred hearts post myocardial infarction (MI). Understanding electrical interaction between engineered heart tissue patches (EHT) and host myocardium represents a key step toward a successful patch engraftment. EHT retain different electrical properties with respect to the host heart tissue due to the hiPSC-CMs immature phenotype, which may lead to increased arrhythmia risk. We developed a modelling framework to examine the influence of patch design on electrical activation at the engraftment site. We performed an in silico investigation of different patch design approaches to restore pre-MI activation properties and evaluated the associated arrhythmic risk. We developed an in silico cardiac electrophysiology model of a transmural cross section of host myocardium. The model featured an infarct region, an epicardial patch spanning the infarct region and a bath region. The patch is modelled as a layer of hiPSC-CM, combined with a layer of conductive polymer (CP). Tissue and patch geometrical dimensions and conductivities were incorporated through 10 modifiable model parameters. We validated our model against 4 independent experimental studies and showed that it can qualitatively reproduce their findings. We performed a global sensitivity analysis (GSA) to isolate the most important parameters, showing that the stimulus propagation is mainly governed by the scar depth, radius and conductivity when the scar is not transmural, and by the EHT patch conductivity when the scar is transmural. We assessed the relevance of small animal studies to humans by comparing simulations of rat, rabbit and human myocardium. We found that stimulus propagation paths and GSA sensitivity indices are consistent across species. We explored which EHT design variables have the potential to restore physiological propagation. Simulations predict that increasing EHT conductivity from 0.28 to 1-1.1 S/m recovered physiological activation in rat, rabbit and human. Finally, we assessed arrhythmia risk related to increasing EHT conductivity and tested increasing the EHT Na+ channel density as an alternative strategy to match healthy activation. Our results revealed a greater arrhythmia risk linked to increased EHT conductivity compared to increased Na+ channel density. We demonstrated that our modeling framework could capture the interaction between host and EHT patches observed in in vitro experiments. We showed that large (patch and tissue dimensions) and small (cardiac myocyte electrophysiology) scale differences between small animals and humans do not alter EHT patch effect on infarcted tissue. Our model revealed that only when the scar is transmural do EHT properties impact activation times and isolated the EHT conductivity as the main parameter influencing propagation. We predicted that restoring physiological activation by tuning EHT conductivity is possible but may promote arrhythmic behavior. Finally, our model suggests that acting on hiPSC-CMs low action potential upstroke velocity and lack of IK1 may restore pre-MI activation while not promoting arrhythmia.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Arritmias Cardíacas/patologia , Cicatriz/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos , Coelhos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...