Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(19): e2220613120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126722

RESUMO

Prostaglandin E2 (PGE2) and 16,16-dimethyl-PGE2 (dmPGE2) are important regulators of hematopoietic stem and progenitor cell (HSPC) fate and offer potential to enhance stem cell therapies [C. Cutler et al. Blood 122, 3074-3081(2013); W. Goessling et al. Cell Stem Cell 8, 445-458 (2011); W. Goessling et al. Cell 136, 1136-1147 (2009)]. Here, we report that PGE2-induced changes in chromatin at enhancer regions through histone-variant H2A.Z permit acute inflammatory gene induction to promote HSPC fate. We found that dmPGE2-inducible enhancers retain MNase-accessible, H2A.Z-variant nucleosomes permissive of CREB transcription factor (TF) binding. CREB binding to enhancer nucleosomes following dmPGE2 stimulation is concomitant with deposition of histone acetyltransferases p300 and Tip60 on chromatin. Subsequent H2A.Z acetylation improves chromatin accessibility at stimuli-responsive enhancers. Our findings support a model where histone-variant nucleosomes retained within inducible enhancers facilitate TF binding. Histone-variant acetylation by TF-associated nucleosome remodelers creates the accessible nucleosome landscape required for immediate enhancer activation and gene induction. Our work provides a mechanism through which inflammatory mediators, such as dmPGE2, lead to acute transcriptional changes and modify HSPC behavior to improve stem cell transplantation.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Cromatina , Dinoprostona , Sequências Reguladoras de Ácido Nucleico , Montagem e Desmontagem da Cromatina
2.
Elife ; 102021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34939923

RESUMO

Hematopoietic stem cells (HSCs) must ensure adequate blood cell production following distinct external stressors. A comprehensive understanding of in vivo heterogeneity and specificity of HSC responses to external stimuli is currently lacking. We performed single-cell RNA sequencing (scRNA-Seq) on functionally validated mouse HSCs and LSK (Lin-, c-Kit+, Sca1+) progenitors after in vivo pharmacological perturbation of niche signals interferon, granulocyte colony-stimulating factor (G-CSF), and prostaglandin. We identified six HSC states that are characterized by enrichment but not exclusive expression of marker genes. External signals induced rapid transitions between HSC states but transcriptional response varied both between external stimulants and within the HSC population for a given perturbation. In contrast to LSK progenitors, HSCs were characterized by a greater link between molecular signatures at baseline and in response to external stressors. Chromatin analysis of unperturbed HSCs and LSKs by scATAC-Seq suggested some HSC-specific, cell intrinsic predispositions to niche signals. We compiled a comprehensive resource of HSC- and LSK progenitor-specific chromatin and transcriptional features that represent determinants of signal receptiveness and regenerative potential during stress hematopoiesis.


Most organs in the human body are maintained by a type of immature cells known as adult stem cells, which ensure a constant supply of new, mature cells. Adult stem cells monitor their environment through external signalling molecules and replace damaged cells as needed. Stem cell therapy takes advantage of the regenerative ability of immature stem cells and can be helpful for conditions such as blood diseases, autoimmune diseases, neurodegeneration and cancer. For example, hematopoietic stem-cell transplantation is a treatment for some types of cancer and blood disorders, in which stem cells are harvested from the blood or bone marrow and reintroduced into the body, where they can develop into all types of blood cells, including white blood cells, red blood cells and platelets. Hematopoietic stem-cell transplants have been in use for over 30 years, but they remain a highly risky procedure. One of the challenges is that outcomes can vary between patients and many of the factors that can influence the 'regenerative' potential of hematopoietic stem cells, such as external signalling molecules, are not well understood. To fill this gap, Fast et al. analysed which genes are turned on and off in hematopoietic stem cells in response to several external signalling molecules. To do so, three signalling pathways in mice were altered by injecting them with different chemicals. After two hours, the hematopoietic stem cells were purified and the gene expression for each cell was analysed. This revealed that the types of genes and the strength at which they were affected by each chemical was unique. Moreover, hematopoietic stem cells responded rapidly to external signals, with substantial differences in gene expression between individual groups of cells. Contrary to more specialised cells, the external signalling genes in some hematopoietic stem cells were already activated without being injected with external signalling molecules. This suggest that low levels of external signalling molecules released from their microenvironment may prepare stem cells to better respond to future stress or injuries. These results help to better understand stem cells and to evaluate how the signalling state of hematopoietic stem cells affects regeneration, and ultimately improve hematopoietic stem cell transplantation for patients.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Linhagem da Célula , Feminino , Fator Estimulador de Colônias de Granulócitos/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interferons/efeitos dos fármacos , Masculino , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Prostaglandinas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
3.
Nature ; 577(7792): 676-681, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969699

RESUMO

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics3,4, cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Assuntos
Vias Autônomas/fisiopatologia , Cor de Cabelo/fisiologia , Melanócitos/patologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/patologia , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Glândulas Suprarrenais/metabolismo , Adrenalectomia , Animais , Vias Autônomas/patologia , Proliferação de Células , Células Cultivadas , Denervação , Feminino , Humanos , Masculino , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Norepinefrina/metabolismo , Trauma Psicológico/patologia , Trauma Psicológico/fisiopatologia , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Estresse Psicológico/patologia , Sistema Nervoso Simpático/patologia
4.
Proc Natl Acad Sci U S A ; 115(37): 9252-9257, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139917

RESUMO

Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based ß-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure-activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hematopoese/efeitos dos fármacos , Oxilipinas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Hematopoese/genética , Camundongos , Camundongos Knockout , Oxilipinas/química , Oxilipinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
mSphere ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932814

RESUMO

Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria-Acetobacter and Lactobacillus. Wolbachia-infected flies have significantly reduced titers of Acetobacter. Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia-induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCEWolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects and parasitic nematodes. They can block mosquitos' ability to transmit several infectious disease-causing pathogens, including Zika, dengue, chikungunya, and West Nile viruses and malaria parasites. Certain extracellular bacteria present in the gut lumen of these insects can also block pathogen transmission. However, our understanding of interactions between Wolbachia and gut bacteria and how they influence each other is limited. Here we show that the presence of Wolbachia strain wMel changes the composition of gut commensal bacteria in the fruit fly. Our findings implicate interactions between bacterial species as a key factor in determining the overall composition of the microbiome and thus reveal new paradigms to consider in the development of disease control strategies.

6.
Stem Cell Reports ; 8(6): 1465-1471, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591648

RESUMO

This perspective describes the usefulness of zebrafish as a model to study interaction of hematopoietic stem cells with the associated niche in vivo, explains how such interactions influence regeneration, migration, and clonality of HSCs, and defines their fate during differentiation.


Assuntos
Autorrenovação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Movimento Celular , Células-Tronco Hematopoéticas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Nicho de Células-Tronco/fisiologia , Peixe-Zebra
7.
Blood ; 128(15): 1928-1939, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27554085

RESUMO

Enhancers are the primary determinants of cell identity, and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9-kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8-kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the 6 genes that were upregulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene-coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.


Assuntos
Embrião de Mamíferos/metabolismo , Endoglina/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Hematopoese/fisiologia , Sondas Moleculares/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Endoglina/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Sondas Moleculares/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
9.
Exp Cell Res ; 329(2): 220-6, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25094063

RESUMO

Throughout the lifetime of an individual, hematopoietic stem cells (HSCs) self-renew and differentiate into lineages that include erythrocytes, platelets and all immune cells. HSC transplantation offers a potentially curative treatment for a number of hematopoietic and non-hematopoietic malignancies as well as immune and genetic disorders. Limited availability of immune-matched donors reduces the viable options for many patients in need of HSC transplantation, particularly those of diverse racial and ethnic backgrounds. Due to rapid availability and less stringent immune-matching requirements, umbilical cord blood (UCB) has emerged as a valuable source of transplantable HSCs. A single UCB unit contains a suboptimal number of HSCs for treating larger children or adults and there has thus been great clinical interest in expanding UCB HSCs ex vivo for use in transplantation. In this review we discuss the latest research and future avenues for the therapeutic use of small lipid mediator dmPGE2 to expand HSC numbers for transplantation. Originally identified in a chemical screen in zebrafish, dmPGE2 has now advanced to a phase II clinical trial as a therapy for patients with leukemia and lymphoma who are undergoing UCB transplantation.


Assuntos
Medula Óssea/metabolismo , Dinoprostona/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Adulto , Animais , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Humanos
10.
Proc Natl Acad Sci U S A ; 110(26): 10788-93, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23744038

RESUMO

Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insect vectors of devastating infectious diseases. Although Wolbachia are providing novel strategies for the control of several human pathogens, the processes underlying Wolbachia's successful propagation within and across species remain elusive. Wolbachia are mainly vertically transmitted; however, there is also evidence of extensive horizontal transmission. Here, we provide several lines of evidence supporting Wolbachia's targeting of ovarian stem cell niches--referred to as "niche tropism"--as a previously overlooked strategy for Wolbachia thriving in nature. Niche tropism is pervasive in Wolbachia infecting the Drosophila genus, and different patterns of niche tropism are evolutionarily conserved. Phylogenetic analysis, confirmed by hybrid introgression and transinfection experiments, demonstrates that bacterial factors are the major determinants of differential patterns of niche tropism. Furthermore, bacterial load is increased in germ-line cells passing through infected niches, supporting previous suggestions of a contribution of Wolbachia from stem-cell niches toward vertical transmission. These results support the role of stem-cell niches as a key component for the spreading of Wolbachia in the Drosophila genus and provide mechanistic insights into this unique tissue tropism.


Assuntos
Drosophila/microbiologia , Ovário/microbiologia , Células-Tronco/microbiologia , Wolbachia/genética , Wolbachia/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Drosophila/genética , Feminino , Interações Hospedeiro-Patógeno , Masculino , Ovário/citologia , Óvulo/microbiologia , Filogenia , Especificidade da Espécie , Nicho de Células-Tronco , Simbiose , Wolbachia/patogenicidade
11.
Science ; 334(6058): 990-2, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22021671

RESUMO

Wolbachia are widespread maternally transmitted intracellular bacteria that infect most insect species and are able to alter the reproduction of innumerous hosts. The cellular bases of these alterations remain largely unknown. Here, we report that Drosophila mauritiana infected with a native Wolbachia wMau strain produces about four times more eggs than the noninfected counterpart. Wolbachia infection leads to an increase in the mitotic activity of germline stem cells (GSCs), as well as a decrease in programmed cell death in the germarium. Our results suggest that up-regulation of GSC division is mediated by a tropism of Wolbachia for the GSC niche, the cellular microenvironment that supports GSCs.


Assuntos
Drosophila/citologia , Drosophila/microbiologia , Células Germinativas/citologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Wolbachia/fisiologia , Animais , Apoptose , Proliferação de Células , Drosophila/fisiologia , Feminino , Células Germinativas/fisiologia , Masculino , Mitose , Oogênese , Células-Tronco/fisiologia , Regulação para Cima
12.
Neuro Oncol ; 13(8): 820-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21724651

RESUMO

We tested the use of the small-molecule Inhibitor of Apoptosis Protein (IAP) inhibitor LBW242 in combination with the standard-of-care therapies of irradiation and temozolomide for malignant gliomas. In vitro assays demonstrated that LBW242 enhanced the cytotoxic activity of radiotherapy, and clonogenic assays showed that the combination therapy led to a synergistic anti-glioma effect in multiple cell lines. Neurosphere assays revealed that the combination of radiation and LBW242 led to a pro-apoptotic effect in these glioma-initiating cell-enriched assays, with a corresponding inhibition of primary tumor cell growth. Athymic mice bearing established human malignant glioma tumor xenografts treated with LBW242 plus radiation and temozolomide demonstrated a synergistic suppression of tumor growth. Taken together, these experiments show that the pro-apoptotic and anti-glioma effects of radiotherapy and chemotherapy can be enhanced by the addition of a small-molecule IAP inhibitor. These results are readily translatable to clinical trial and offer the potential for improved treatment outcomes for patients with glioma.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Oligopeptídeos/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Western Blotting , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Terapia Combinada , Dacarbazina/uso terapêutico , Raios gama , Glioma/patologia , Glioma/radioterapia , Humanos , Técnicas In Vitro , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Camundongos Nus , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...