Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 9(3): e1003186, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23516355

RESUMO

Many studies have proved that oncogenic viruses develop redundant mechanisms to alter the functions of the tumor suppressor p53. Here we show that Epstein-Barr virus (EBV), via the oncoprotein LMP-1, induces the expression of ΔNp73α, a strong antagonist of p53. This phenomenon is mediated by the LMP-1 dependent activation of c-Jun NH2-terminal kinase 1 (JNK-1) which in turn favours the recruitment of p73 to ΔNp73α promoter. A specific chemical inhibitor of JNK-1 or silencing JNK-1 expression strongly down-regulated ΔNp73α mRNA levels in LMP-1-containing cells. Accordingly, LMP-1 mutants deficient to activate JNK-1 did not induce ΔNp73α accumulation. The recruitment of p73 to the ΔNp73α promoter correlated with the displacement of the histone-lysine N-methyltransferase EZH2 which is part of the transcriptional repressive polycomb 2 complex. Inhibition of ΔNp73α expression in lymphoblastoid cells (LCLs) led to the stimulation of apoptosis and up-regulation of a large number of cellular genes as determined by whole transcriptome shotgun sequencing (RNA-seq). In particular, the expression of genes encoding products known to play anti-proliferative/pro-apoptotic functions, as well as genes known to be deregulated in different B cells malignancy, was altered by ΔNp73α down-regulation. Together, these findings reveal a novel EBV mechanism that appears to play an important role in the transformation of primary B cells.


Assuntos
Linfócitos B/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas da Matriz Viral/genética , Apoptose , Linfócitos B/virologia , Transformação Celular Viral/genética , Transformação Celular Viral/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Epigênese Genética , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Análise de Sequência de RNA , Transcrição Gênica , Ativação Transcricional , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima , Proteínas da Matriz Viral/metabolismo
2.
Int J Cancer ; 130(11): 2484-94, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21796618

RESUMO

The DOK1 gene is a putative tumour suppressor gene located on the human chromosome 2p13 which is frequently rearranged in leukaemia and other human tumours. We previously reported that the DOK1 gene can be mutated and its expression down-regulated in human malignancies. However, the mechanism underlying DOK1 silencing remains largely unknown. We show here that unscheduled silencing of DOK1 expression through aberrant hypermethylation is a frequent event in a variety of human malignancies. DOK1 was found to be silenced in nine head and neck cancer (HNC) cell lines studied and DOK1 CpG hypermethylation correlated with loss of gene expression in these cells. DOK1 expression could be restored via demethylating treatment using 5-aza-2'deoxycytidine. In addition, transduction of cancer cell lines with DOK1 impaired their proliferation, consistent with the critical role of epigenetic silencing of DOK1 in the development and maintenance of malignant cells. We further observed that DOK1 hypermethylation occurs frequently in a variety of primary human neoplasm including solid tumours (93% in HNC, 81% in lung cancer) and haematopoietic malignancy (64% in Burkitt's lymphoma). Control blood samples and exfoliated mouth epithelial cells from healthy individuals showed a low level of DOK1 methylation, suggesting that DOK1 hypermethylation is a tumour specific event. Finally, an inverse correlation was observed between the level of DOK1 gene methylation and its expression in tumour and adjacent non tumour tissues. Thus, hypermethylation of DOK1 is a potentially critical event in human carcinogenesis, and may be a potential cancer biomarker and an attractive target for epigenetic-based therapy.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Neoplasias de Cabeça e Pescoço/genética , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Decitabina , Feminino , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Risco , Proteínas Supressoras de Tumor/genética
3.
J Virol ; 85(17): 9013-22, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715489

RESUMO

Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis.


Assuntos
Apoptose , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , NF-kappa B/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/patogenicidade , Fator de Necrose Tumoral alfa/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos
4.
J Immunol ; 185(11): 6439-47, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20980631

RESUMO

EBV infects most of the human population and is associated with a number of human diseases including cancers. Moreover, evasion of the immune system and chronic infection is an essential step for EBV-associated diseases. In this paper, we show that EBV can alter the regulation and expression of TLRs, the key effector molecules of the innate immune response. EBV infection of human primary B cells resulted in the inhibition of TLR9 functionality. Stimulation of TLR9 on primary B cells led to the production of IL-6, TNF-α, and IgG, which was inhibited in cells infected with EBV. The virus exerts its inhibitory function by decreasing TLR9 mRNA and protein levels. This event was observed at early time points after EBV infection of primary cells, as well as in an immortalized lymphoblastoid cell line. We determined that the EBV oncoprotein latent membrane protein 1 (LMP1) is a strong inhibitor of TLR9 transcription. Overexpression of LMP1 in B cells reduced TLR9 promoter activity, mRNA, and protein levels. LMP1 mutants altered in activating the NF-κB pathway prevented TLR9 promoter deregulation. Blocking the NF-κB pathway recovered TLR9 promoter activity. Mutating the NF-κB cis element on the TLR9 promoter restored luciferase transcription in the presence of LMP1. Finally, deletion of the LMP1 gene in the EBV genome abolished the ability of the virus to induce TLR9 downregulation. Our study describes a mechanism used by EBV to suppress the host immune response by deregulating the TLR9 transcript through LMP1-mediated NF-κB activation.


Assuntos
Regulação para Baixo/imunologia , Herpesvirus Humano 4/imunologia , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/genética , Proteínas da Matriz Viral/fisiologia , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Proteínas Oncogênicas Virais/fisiologia , Receptor Toll-Like 9/biossíntese , Transcrição Gênica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...