Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(7): 103815, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713988

RESUMO

The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.


Assuntos
Ração Animal , Arginina , Galinhas , Coccidiose , Dieta , Suplementos Nutricionais , Enterite , Intestinos , Doenças das Aves Domésticas , Distribuição Aleatória , Animais , Arginina/administração & dosagem , Arginina/farmacologia , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Doenças das Aves Domésticas/imunologia , Suplementos Nutricionais/análise , Enterite/veterinária , Enterite/imunologia , Ração Animal/análise , Dieta/veterinária , Coccidiose/veterinária , Coccidiose/imunologia , Intestinos/efeitos dos fármacos , Eimeria/fisiologia , Clostridium perfringens/fisiologia , Masculino , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia
2.
Poult Sci ; 103(7): 103826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761462

RESUMO

The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.


Assuntos
Ração Animal , Arginina , Galinhas , Clostridium perfringens , Coccidiose , Dieta , Suplementos Nutricionais , Enterite , Doenças das Aves Domésticas , Distribuição Aleatória , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Arginina/administração & dosagem , Arginina/farmacologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Enterite/veterinária , Enterite/imunologia , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Clostridium perfringens/fisiologia , Coccidiose/veterinária , Coccidiose/imunologia , Eimeria/fisiologia , Intestinos/efeitos dos fármacos , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Relação Dose-Resposta a Droga , Masculino , Imunidade Inata/efeitos dos fármacos
3.
Animals (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338116

RESUMO

This study aimed to understand the effect of C. jejuni challenge on the cecal microbiota and short-chain fatty acid (SCFA) concentration to form a better understanding of the host-pathogen interaction. Sixty broilers were randomly allocated into two treatments: control and challenge. Each treatment was replicated in six pens with five birds per pen. On day 21, birds in the challenge group were orally gavaged with 1 × 108C. jejuni/mL, while the control group was mock challenged with PBS. The C. jejuni challenge had no effect on body weight, feed intake, and feed conversion ratio compared to the control group. On day 28, the C. jejuni challenge decreased the observed features and Shannon index compared to the control group. On the species level, the C. jejuni challenge decreased (p = 0.02) the relative abundance of Sellimonas intestinalis on day 28 and increased (p = 0.04) the relative abundance of Faecalibacterium sp002160895 on day 35 compared to the control group. The C. jejuni challenge did not change the microbial function and the cecal concentrations of SCFA on days 28 and 35 compared to the control group. In conclusion, C. jejuni might alter the gut microbiota's composition and diversity without significantly compromising broilers' growth.

4.
Front Physiol ; 14: 1326809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235383

RESUMO

Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.

5.
Microorganisms ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363726

RESUMO

C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.

6.
Microorganisms ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296234

RESUMO

Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, ß-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.

7.
Foods ; 11(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626971

RESUMO

The gut of warm-blooded animals is colonized by microbes possibly constituting at least 100 times more genetic material of microbial cells than that of the somatic cells of the host. These microbes have a profound effect on several physiological functions ranging from energy metabolism to the immune response of the host, particularly those associated with the gut immune system. The gut of a newly hatched chick is typically sterile but is rapidly colonized by microbes in the environment, undergoing cycles of development. Several factors such as diet, region of the gastrointestinal tract, housing, environment, and genetics can influence the microbial composition of an individual bird and can confer a distinctive microbiome signature to the individual bird. The microbial composition can be modified by the supplementation of probiotics, prebiotics, or synbiotics. Supplementing these additives can prevent dysbiosis caused by stress factors such as infection, heat stress, and toxins that cause dysbiosis. The mechanism of action and beneficial effects of probiotics vary depending on the strains used. However, it is difficult to establish a relationship between the gut microbiome and host health and productivity due to high variability between flocks due to environmental, nutritional, and host factors. This review compiles information on the gut microbiota, dysbiosis, and additives such as probiotics, postbiotics, prebiotics, and synbiotics, which are capable of modifying gut microbiota and elaborates on the interaction of these additives with chicken gut commensals, immune system, and their consequent effects on health and productivity. Factors to be considered and the unexplored potential of genetic engineering of poultry probiotics in addressing public health concerns and zoonosis associated with the poultry industry are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA