Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 476: 116659, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604412

RESUMO

Modern toxicology's throughput has dramatically increased due to alternative models, laboratory automation, and machine learning. This has enabled comparative studies across species and assays to prioritize chemical hazard potential and to understand how different model systems might complement one another. However, such comparative studies of high-throughput data are still in their infancy, with more groundwork needed to firmly establish the approach. Therefore, this study aimed to compare the bioactivity of the NIEHS Division of Translational Toxicology's (DTT) 87-compound developmental neurotoxicant (DNT) library in zebrafish and an in vitro high-throughput cell culture system. The early life-stage zebrafish provided a whole animal approach to developmental toxicity assessment. Chemical hits for abnormalities in embryonic zebrafish morphology, mortality, and behavior (ZBEscreen™) were compared with chemicals classified as high-risk by the Cell Health Index (CHI™), which is an outcome class probability from a machine learning classifier using 12 parameters from the SYSTEMETRIC® Cell Health Screen (CHS). The CHS was developed to assess human toxicity risk using supervised machine learning to classify acute cell stress phenotypes in a human leukemia cell line (HL60 cells) following a 4-h exposure to a chemical of interest. Due to the design of the screen, the zebrafish assays were more exhaustive, yielding 86 total bioactive hits, whereas the SYSTEMETRIC® CHS focusing on acute toxicity identified 20 chemicals as potentially toxic. The zebrafish embryonic and larval photomotor response assays (EPR and LPR, respectively) detected 40 of the 47 chemicals not found by the zebrafish morphological screen and CHS. Collectively, these results illustrate the advantages of using two alternative models in tandem for rapid hazard assessment and chemical prioritization and the effectiveness of CHI™ in identifying toxicity within a single multiparametric assay.


Assuntos
Leucemia , Peixe-Zebra , Animais , Humanos , Bioensaio , Células HL-60 , Larva
2.
Sci Rep ; 12(1): 12820, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896603

RESUMO

The 4-anilinoquin(az)oline is a well-known kinase inhibitor scaffold incorporated in clinical inhibitors including gefitinib, erlotinib, afatinib, and lapatinib, all of which have previously demonstrated activity against chordoma cell lines in vitro. We screened a focused array of compounds based on the 4-anilinoquin(az)oline scaffold against both U-CH1 and the epidermal growth factor receptor (EGFR) inhibitor resistant U-CH2. To prioritize the hit compounds for further development, we screened the compound set in a multiparameter cell health toxicity assay. The de-risked compounds were then screened against a wider panel of patient derived cell lines and demonstrated low micromolar efficacy in cells. We also investigated the properties that gave rise to the toxophore markers, including the structural and electronic features, while optimizing for EGFR in-cell target engagement. These de-risked leads present a potential new therapeutic avenue for treatment of chordomas and new chemical tools and probe compound 45 (UNC-CA359) to interrogate EGFR mediated disease phenotypes.


Assuntos
Compostos de Anilina/farmacologia , Cordoma , Neoplasias Pulmonares , Quinazolinas/farmacologia , Cordoma/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico
3.
J Pharmacol Toxicol Methods ; 111: 107088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34144174

RESUMO

Excipients serve as vehicles, preservatives, solubilizers, and colorants for drugs, food, and cosmetics. They are considered to be inert at biological targets; however, several reports suggest that some could interact with human targets and cause unwanted effects. We investigated 40 commonly used drug excipients for cellular stress in the AsedaSciences® SYSTEMETRIC® Cell Health Screen, which was developed to estimate toxicity risk of small molecular entities (SMEs). The screen uses supervised machine learning (ML) to classify test compound cell stress phenotypes relative to a training set of on-market and withdrawn drugs. While 80% (n = 32) of the excipients did not show elevated risk in a broad, but pharmacologically relevant, concentration range (5 nM to 100 µM), we identified 20% (n = 8) with elevated risk. This group included two mercury containing preservatives, propyl gallate, methylene blue, benzethonium chloride, and cetylpyridinium chloride, all known for previously reported safety issues. All compounds were tested in parallel in an in vitro assay panel regularly used to investigate off-target effects of drug candidates. Target engagement in this assay panel confirmed risk-indicative biological activity for the same excipients, except propyl gallate, which may have a separate, interesting mechanism. We conclude that the SYSTEMETRIC Cell Health Screen, in conjunction with in vitro pharmacological profiling, can provide a fast and cost effective methodology for first line testing of SMEs, including excipients, to avoid cellular damage, particularly in the GI, where they are represented in high concentrations.


Assuntos
Excipientes , Conservantes Farmacêuticos , Excipientes/toxicidade , Humanos , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...