Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Med Dosim ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38061915

RESUMO

This study exposed the implementation of a novel technique (VMATLSL) for the planning of moving targets in lung stereotactic body radiation therapy (SBRT). This new technique has been compared to static conformal radiotherapy (3D-CRT), volumetric-modulated arc therapy (VMAT) and dynamic conformal arc (DCA). The rationale of this study was to lower geometric complexity (54.9% lower than full VMAT) and hence ensure the reproducibility of the treatment delivery by reducing the risk for interplay errors induced by respiratory motion. Dosimetry metrics were studied with a cohort of 30 patients. Our results showed that leaf speed limitation provided conformal number (CN) close to the VMAT (median CN of VMATLSL is 0.78 vs 0.82 for full VMAT) and were a significant improvement on 3D-CRT and DCA with segment-weight optimized (respectively 0.55 and 0.57). This novel technique is an alternative to VMAT or DCA for lung SBRT treatments, combining independence from the patient's breathing pattern, from the size and amplitude of the lesion, free from interplay effect and with dosimetry metrics close to the best that could be achieve with full VMAT.

2.
J Appl Clin Med Phys ; 24(9): e14013, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144958

RESUMO

PURPOSE: A new development on the RayStation treatment planning system (TPS) allows a plan to be planned by imposing a constraint on the leaf sequencing: all leaves move in the same direction before moving again in the opposite direction to create a succession of sliding windows (SWs). The study aims to investigate this new leaf sequencing, coupled with standard optimization (SO) and multi-criteria optimization (MCO) and to compare it with the standard sequencing (STD). METHODS: Sixty plans were replanned for 10 head and neck cancer patients (two dose levels simultaneously SIB, 56 and 70 Gy in 35 fractions). All plans were compared, and a Wilcoxon signed-rank test was performed. Pre-processing QA and metrics of multileaf collimator (MLC) complexity were studied. RESULTS: All methodologies met the dose requirements for the planning target volumes (PTVs) and organs at risk (OARs). SO demonstrates significantly best results for homogeneity index (HI), conformity index (CI), and target coverage (TC). SO-SW gives best results for PTVs (D98% and D2% ) but the differences between techniques are less than 1%. Only the D2%,PTV-56 Gy is higher with both MCO methods. MCO-STD offer the best sparing OARs (parotids, spinal cord, larynx, oral cavity). The gamma passing rates (GPRs) with 3%/3 mm criteria between the measured and calculated dose distributions are higher than 95%, slightly lowest with SW. The number of monitor units (MUs) and MLC metrics are higher in SW show a higher modulation. CONCLUSIONS: All plans are feasible for the treatment. A clear advantage of SO-SW is that the treatment plan is more straightforward to planning by the user due to the more advanced modulation. MCO stands out for its ease of use and will allow a less experienced user to offer a better plan than in SO. In addition, MCO-STD will reduce the dose to the OARs while maintaining good TC.


Assuntos
Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
3.
Front Oncol ; 13: 1130490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007109

RESUMO

Objective: To determine the MRI-Linac added value over conventional image-guided radiation therapy (IGRT) in liver tumors Stereotactic ablative radiation therapy (SABR). Materials and methods: We retrospectively compared the Planning Target Volumes (PTVs), the spared healthy liver parenchyma volumes, the Treatment Planning System (TPS) and machine performances, and the patients' outcomes when using either a conventional accelerator (Versa HD®, Elekta, Utrecht, NL) with Cone Beam CT as the IGRT tool or an MR-Linac system (MRIdian®, ViewRay, CA). Results: From November 2014 to February 2020, 59 patients received a SABR treatment (45 and 19 patients in the Linac and MR-Linac group, respectively) for 64 primary or secondary liver tumors. The mean tumor size was superior in the MR-Linac group (37,91cc vs. 20.86cc). PTV margins led to a median 74%- and 60% increase in target volume in Linac-based and MRI-Linac-based treatments, respectively. Liver tumor boundaries were visible in 0% and 72% of the cases when using CBCT and MRI as IGRT tools, respectively. The mean prescribed dose was similar in the two patient groups. Local tumor control was 76.6%, whereas 23.4% of patients experienced local progression (24.4% and 21.1% of patients treated on the conventional Linac and the MRIdian system, respectively). SABR was well tolerated in both groups, and margins reduction and the use of gating prevented ulcerous disease occurrence. Conclusion: The use of MRI as IGRT allows for the reduction of the amount of healthy liver parenchyma irradiated without any decrease of the tumor control rate, which would be helpful for dose escalation or subsequent liver tumor irradiation if needed.

4.
Phys Imaging Radiat Oncol ; 25: 100425, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36896334

RESUMO

Background and Purpose: Magnetic Resonance guided Radiotherapy (MRgRT) still needs the acquisition of Computed Tomography (CT) images and co-registration between CT and Magnetic Resonance Imaging (MRI). The generation of synthetic CT (sCT) images from the MR data can overcome this limitation. In this study we aim to propose a Deep Learning (DL) based approach for sCT image generation for abdominal Radiotherapy using low field MR images. Materials and methods: CT and MR images were collected from 76 patients treated on abdominal sites. U-Net and conditional Generative Adversarial Network (cGAN) architectures were used to generate sCT images. Additionally, sCT images composed of only six bulk densities were generated with the aim of having a Simplified sCT.Radiotherapy plans calculated using the generated images were compared to the original plan in terms of gamma pass rate and Dose Volume Histogram (DVH) parameters. Results: sCT images were generated in 2 s and 2.5 s with U-Net and cGAN architectures respectively.Gamma pass rates for 2%/2mm and 3%/3mm criteria were 91% and 95% respectively. Dose differences within 1% for DVH parameters on the target volume and organs at risk were obtained. Conclusion: U-Net and cGAN architectures are able to generate abdominal sCT images fast and accurately from low field MRI.

5.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558213

RESUMO

WO3 is a known photocatalytic metal oxide frequently studied for its depollution properties. However, it suffers from a high recombination rate of the photogenerated electron/holes pair that is detrimental to its performance. In this paper, we present a new chemical method to decorate WO3 nanoleaves (NLs) with a complementary metal oxide (ZnWO4) in order to improve the photocatalytic performance of the composite material for the abatement of 400 ppb NO2 under mild UV exposure. Our strategy was to synthesize WO3·2H2O nanoleaves, then, to expose them, in water-free organic solution, to an organometallic precursor of Zn(Cy)2. A structural water molecule from WO3·2H2O spontaneously decomposes Zn(Cy)2 and induces the formation of the ZnO@WO3·H2O nanocomposite. The material was characterized by electronic microscopy (SEM, TEM), TGA, XRD, Raman and solid NMR spectroscopies. A simple thermal treatment under air at 500 °C affords the ZnWO4@WO3 nanocomposite. The resulting material, additionally decorated with 1% wt. Au, presents a remarkable increase (+166%) in the photocatalytic abatement of NO2 under UV compared to the pristine WO3 NLs. This synthesis method paves the way to the versatile preparation of a wide range of MOx@WO3 nanocomposites (MOx = metal oxide).

6.
Phys Med Biol ; 68(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579811

RESUMO

Objective. The aim of this work was to highlight and characterize a systemic 'star-like' artefact inherent to the low field 0.35 T MRIdian MR-linac system, a magnetic resonance guided radiotherapy device. This artefact is induced by the original split gradients coils design. This design causes a surjection of the intensity gradient inZ(or head-feet) direction. This artefact appears on every sequence with phase encoding in the head-feet direction.Approach. Basic gradient echo sequence and clinical mandatory bSSFP sequence were used. Three setups using manufacturer provided QA phantoms were designed: two including the linearity control grid used for the characterisation and a third including two homogeneity control spheres dedicated to the artefact management in a more clinical like situation. The presence of the artefact was checked in four different MRidian sites. The tested parameters based on the literature were: phase encoding orientation, slab selectivity, excitation bandwidth (BWRF), acceleration factor (R) and phase/slab oversampling (PO/SO).Main results. The position of this artefact is constant and reproducible over the tested MRIdian sites. The typical singularity saturated dot or star is visible even with the 3D slab-selection enabled. A management is proposed by decreasing the BWRF, theRin head-feet direction and increasing the PO/SO. The oversampling can be optimized using a formula to anticipate the location of artefact in the field of view.Significance. The star-like artefact has been well characterised. A manageable solution comes at the cost of acquisition time. Observed in clinical cases, the artefact may degrade the images used for the RT planning and repositioning during the treatment unless corrected.


Assuntos
Artefatos , Radioterapia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Imagens de Fantasmas , Aceleradores de Partículas
7.
Adv Radiat Oncol ; 7(6): 100999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060635

RESUMO

Purpose: Adaptive magnetic resonance (MR)-guided brachytherapy takes an important place as consolidation within the care of cervical malignancies, but may be impracticable in some unusual cases. This work aimed to present the case of adaptive MR-guided external beam radiation therapy (aMRgRT) used as a boost in a recurrence of cervical cancer. Methods and Materials: We report on a case of a parametrial recurrence in a 31-year-old patient who already underwent a trachelectomy as treatment for her primary growth. After concomitant radio-chemotherapy, a brachytherapy boost was performed. Because of its position in relation to the left uterine artery after trachelectomy, impeding interstitial catheters set up, the relapse was insufficiently covered. With the aim to refine the coverage of target volumes, aMRgRT treatment was undertaken to allow for achievement of the dosimetric goals. Results: In clinical circumstances where the brachytherapy step was hindered, aMRgRT presents many advantages. First, daily native MR-imaging outperforms usual x-ray imaging in the pelvis, refining repositioning. Second, its specific workflow allows for the performance of adaptive treatment, with consideration of both the inter- and intrafraction motions of organs at risk and target volumes. Conclusion: In nonfeasible brachytherapy situations, aMRgRT could be a satisfying substitute. Nevertheless, brachytherapy remains the standard of care as a boost in locally advanced cervical cancer.

8.
Langmuir ; 38(28): 8545-8554, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793138

RESUMO

The decoration of carbon nanotubes (CNTs) by metal nanoparticles (NPs) combines the advantages of a high specific surface material with catalytic properties of metal nanocrystals. Little work has been devoted to the decoration of CNTs with copper NPs, and no evidence of copper atomic decoration of CNTs has shown up until now. Herein, we demonstrate that the strong acidic oxidation of double-walled CNTs (dwCNTs) is very efficient for the decoration of the carbon surface by copper NPs and atoms. This treatment severely degraded the CNT walls and generated a large amount of disordered sp3 carbon. This amorphous carbon film bears many chemically active functions like carboxyl and hydroxyl ones. In such conditions, the CNT walls behave as very efficient ligands for the stabilization of copper obtained by the thermolysis of the mesityl precursor in organic solution under mild dihydrogen pressure. In addition to copper NPs, we evidenced the presence of a regular coverage with copper atoms over the dwCNTs. This nanocomposite catalyzes the quantitative synthesis of propargylamines via one A3-type coupling reaction. Five consecutive catalytic cycles with 100% yield could be performed with no loss of activity, and the combination of Cu supported on dwCNTs allows a facile recycling of the catalytic material.

9.
Inorg Chem ; 61(19): 7274-7285, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35485936

RESUMO

Amine ligands are expected to drive the organization of metallic centers as well as the chemical reactivity of silver clusters early growing during the very first steps of the synthesis of silver nanoparticles via an organometallic route. Density functional theory (DFT) computational studies have been performed to characterize the structure, the atomic charge distribution, and the planar two-dimensional (2D)/three-dimensional (3D) relative stability of small-size silver clusters (Agn, 2 ≤ n ≤ 7), with or without an ethylamine (EA) ligand coordinated to the Ag clusters. The transition from 2D to 3D structures is shifted from n = 7 to 6 in the presence of one EA coordinating ligand, and it is explained from the analysis of the Ag-N and Ag-Ag bond energies. For fully EA saturated silver clusters (Agn-EAn), the effect on the 2D/3D transition is even more pronounced with a shift between n = 4 and 5. Subsequent electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM) topological analyses allow for the fine characterization of the dative Ag-N and metallic Ag-Ag bonds, both in nature and in strength. Electron transfer from ethylamine to the coordinated silver atoms induces an increase of the polarization of the metallic core.

10.
Bull Cancer ; 108(11): 1010-1018, 2021 Nov.
Artigo em Francês | MEDLINE | ID: mdl-34625203

RESUMO

INTRODUCTION: Several centers have recently been equipped with MRI-guided radiotherapy systems, including the Paoli-Calmettes Institute which was the first French center to start this activity. We report in this article our early experience. METHODS: Data related to patients treated on the MRIdian® (Viewray®) were prospectively collected. Procedures concerning the implementation of the system and internal organizational issues were summarized. RESULTS: Between February 2019 and March 2020, 201 patients were treated: 40% of treatments were normofractionated (n=70) and 60% used hypofractionation (n=105). The reported monthly occupancy rate at one, six and twelve months was 30%, 62%, and 90%. The distribution of normofractionated treatments was dominated by prostatic (29%) and pancreatic (26%) cancers, followed by abdomino-pelvic irradiations for gynecological cancers (12%) or lymph node diseases (12%) and boosts for rectal or vaginal cancers (11%). Regarding treatments with moderate hypofractionation (dose by fraction between 3 and 5Gy), they corresponded mainly to integrated boost for abdomino-pelvic lymph nodes (38%), while the stereotaxic treatments primarily concerned hepatic lesions (15%), bones (30%). DISCUSSION: The MRIdian® was initially used widely in our service corresponding to a learning curve for MRI guidance. This new tool for image-guided radiotherapy helped us to secure our practice providing solutions for both inter and intra-fraction movements making it possible to reduce the additional margin in order to better protect the organs at risk. The main technical difference with conventional accelerators is the possibility of performing adaptive radiotherapy in real time, the start of which was more gradual.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Neoplasias/radioterapia , Radioterapia Guiada por Imagem , Institutos de Câncer , Fracionamento da Dose de Radiação , Feminino , França , Humanos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/métodos , Imagem por Ressonância Magnética Intervencionista/estatística & dados numéricos , Masculino , Órgãos em Risco , Estudos Prospectivos , Hipofracionamento da Dose de Radiação , Lesões por Radiação/prevenção & controle , Radioterapia Guiada por Imagem/instrumentação , Radioterapia Guiada por Imagem/métodos , Radioterapia Guiada por Imagem/estatística & dados numéricos , Fatores de Tempo , Fluxo de Trabalho
11.
Brachytherapy ; 20(4): 748-754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33883092

RESUMO

PURPOSE: Only scarce data are available on the possibility to reduce rectal dose by controlling rectum filling before HDR (high dose rate) IGABT (image-guided adaptive brachytherapy) in LACC (locally advanced cervical carcinoma) patients. We compared dosimetric outcomes before and after the evacuation of gasses using a rectum emptying tube. METHODS AND MATERIAL: Sixty CT (computed tomography) scans from 30 consecutive patients with cancer of the cervix undergoing HDR IGABT after EBRT were reviewed. Patients who underwent at least one gas evacuation were included in the analysis. The three-dimensional dosimetric data of the dosimetric plan performed before and after gas evacuation were compared. Primary endpoint was the difference between D2cc of the rectum before and after the procedure. Expected probability of grade 2-4 overall rectum morbidity was assessed using a probit model from the prospective multicenter EMBRACE study. RESULTS: Thirty five (58.3%) CT scans from 23 patients (76.7%) requiring gas evacuation were analysed. The mean rectum volume, before and after gas evacuation, was 123.1 cc (sd, ± 60.4) and 66.4 cc (sd, ± 34.8), respectively. For each patient, the volume of the rectum after gas evacuation was lower than before. No major complication occurred during and after the procedure. After gas evacuation, a significant reduction in rectal dose per fraction was observed, on average -4.3 Gy (-38.4%, p < 0.001) for D0.1cc and -1.9 Gy (-30.6%, p < 0.001) for D2cc. Estimated mean probability to develop a grade 2-4 rectum morbidity was significantly lower after gas evacuation, 6.9% (sd,± 1.94) versus 9.5% (sd,± 3.17), p < 0.001. CONCLUSION: Gas evacuation using a rectal emptying tube in selected LACC patients treated with HDR BT after chemoradiotherapy, allowed a substantial reduction in the dose to the rectum. Such procedure could be of particular interest when a dose escalation strategy is being considered.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Braquiterapia/métodos , Feminino , Humanos , Estudos Prospectivos , Dosagem Radioterapêutica , Reto/diagnóstico por imagem , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
13.
Inorg Chem ; 59(7): 4328-4339, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157877

RESUMO

A series of silver amidinate complexes has been studied both experimentally and theoretically, in order to investigate the role of the precursor complex in the control of the synthesis of silver nanoparticles via an organometallic route. The replacement of the methyl substituent of the central carbon atom of the amidinate anion by a n-butyl group allows for the crystallization of the tetranuclear silver amidinate complex 3 instead of a mixture of di- and trinuclear silver amidinate complexes 1 and 2, as obtained with a methyl substituent. The relative stabilities and dissociation schemes of various isomeric arrangements of silver atoms in 3 are investigated at the computational DFT level of calculation, depending on the substituents of the amidinate ligand. The tetranuclear silver amidinate complex 4, exhibiting a diamondlike arrangement of the four silver atoms, is also considered. Ag-N bonds and argentophilic Ag-Ag interactions are finely characterized using ELF and QTAIM topological analyses and compared over the series of the related di-, tri-, and tetranuclear silver amidinate complexes 1-4. In contrast to the Ag-N dative bonds very similar over the series, argentophilic Ag-Ag interactions of various strengths and covalence degree are characterized for complexes 1-4. This gives insight into the role of the amidinate substituents on the nuclearity and intramolecular chemical bonding of the silver amidinate precursors, required for the synthesis of dedicated AgNPs with chemically well defined surfaces.

14.
Langmuir ; 35(44): 14194-14202, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550887

RESUMO

Access to removable nanocomposite electrodes for electrosensing of pollutants is of great importance. However, the preparation of reproducible and reliable carbon electrodes decorated with metallic nanoparticles, a prerequisite for trustworthy devices, remains a challenge. Here we describe an innovative and easy method to prepare such electrodes. These latter are silicon-coated with a thin carbon film on which controlled silver nanostructures are grafted. Different silver nanostructures and surface coverage of the carbon electrode (16, 36, 51, and 67%) can be obtained through a careful control of the time of the hydrogenolysis of the N-N' isopropyl butylamidinate silver organometallic precursor (t = 1, 5, 15, and 60 min, respectively). Importantly, all nanocomposite surfaces are efficient for the electrodetection of 4-nitrophenol with a remarkable decrease of the overpotential of the reduction of such molecule up to 330 mV. The surfaces are characterized by atomic force microscopy, grazing incidence X-ray diffraction, scanning electronic microscopy, and Raman spectroscopy. Furthermore, surface-enhanced Raman scattering effect is also observed. The exaltation of the Raman intensity is proportional to the surface coverage of the electrode; the number of hot spots increases with the surface coverage.

15.
Phys Chem Chem Phys ; 21(29): 16180-16189, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31298248

RESUMO

We report on a new strategy to synthesize Al/CuO nanothermites from commercial Al and ultra-small chemically synthesized CuO nanoparticles coated with alkylamine ligands. These usual ligands stabilize the CuO nanoparticles and prevent them from aggregating, with the goal to enhance the interfacial contact between Al and CuO particles. Using a variety of characterization techniques, including microscopy, spectroscopy, mass spectrometry and calorimetry (ATG/DSC), the structural and chemical evolution of CuO nanoparticles stabilized with alkylamine ligands is analyzed upon heating. This enables us to describe the main decomposition processes taking place on the CuO surface at low temperature (<500 °C): the ligands fragment into organic species accompanied with H2O and CO2 release, which promotes CuO reduction into Cu2O and further Cu. We quantitatively discuss these chemical processes highlighting for the first time the crucial importance of the synthesis conditions that control the chemical purity of the organic ligands (octylamine molecules and derivatives such as carbamate and ammonium ions) in the nanothermite performance. From these findings, an effective method to overcome the ligand-induced CuO degradation at low temperature is proposed and the Al/CuO nanothermite reaction is analyzed, in terms of onset temperature and energy released. We produce original structures composed of aluminium nanoparticles embedded in CuO grainy matrices exhibiting an onset temperature ∼200 °C below the usual Al/CuO onset temperatures, having specific combustion profiles depending on the synthesis conditions, while preserving the total amount of energy released.

16.
Nano Lett ; 19(2): 1379-1386, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30645938

RESUMO

Single-crystalline FeCo nanoparticles with tunable size and shape were prepared by co-decomposing two metal-amide precursors under mild conditions. The nature of the ligands introduced in this organometallic synthesis drastically affects the reactivity of the precursors and, thus, the chemical distribution within the nanoparticles. The presence of the B2 short-range order was evidenced in FeCo nanoparticles prepared in the presence of HDAHCl ligands, combining 57Fe Mössbauer, zero-field 59Co ferromagnetic nuclear resonance (FNR), and X-ray diffraction studies. This is the first time that the B2 structure is directly formed during synthesis without the need of any annealing step. The as-prepared nanoparticles exhibit magnetic properties comparable with the ones for the bulk ( Ms = 226 Am2·kg-1). Composite magnetic materials prepared from these FeCo nanoparticles led to a successful proof-of-concept of the integration on inductor-based filters (27% enhancement of the inductance value at 100 MHz).

17.
Brachytherapy ; 17(6): 922-928, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061056

RESUMO

PURPOSE: To explore the best variables combination for a predictive model of vaginal toxicity in cervical cancer patients undergoing brachytherapy (BT). METHODS AND MATERIALS: Clinical and 3-dimensional dosimetric parameters were retrospectively extracted from an institutional database of consecutive patients undergoing intracavitary BT after external beam radiation therapy from 2006 to 2013 for a cervical cancer. A least absolute shrinkage and selection operator selection procedure in Cox's proportional hazards regression model was performed to select a set of relevant predictors for a multivariate normal tissue complication probability model of Grade ≥2 vaginal late toxicity. Outcomes reliability was internally assessed by bootstrap resampling method. RESULTS: One hundred sixty-nine women were included in the present study with a median followup time of 3.8 years (interquartile range [IQR], 1.9-5.6 years). The 2 years and 5 years cumulative incidence rates of Grade ≥2 late vaginal toxicity were 19.9% and 27.5%, respectively. Among 31 metrics and six clinical factors extracted, the optimal model included two dosimetric variables: V70Gy and D5% (the percentage volume that received a dose greater or equal to 70 Gy and the minimum dose given to the hottest 5% volume, respectively). Area under the ROC curve at 2 and 5 years of followup were 0.85 and 0.91, respectively. Regarding internal validation, median area under the ROC curve of bootstrap predictions was 0.83 (IQR, 0.78-0.88) and 0.89 (IQR, 0.85-0.93) at 2 and 5 years of followup, respectively. CONCLUSIONS: A multivariate normal tissue complication probability model for severe vaginal toxicity based on two dosimetric variables (V70Gy and D5%) provides reliable discrimination capability in a cohort of cervical cancer treated with external beam radiation therapy and BT.


Assuntos
Braquiterapia/efeitos adversos , Lesões por Radiação/epidemiologia , Neoplasias do Colo do Útero/radioterapia , Vagina/efeitos da radiação , Adulto , Idoso , Braquiterapia/métodos , Bases de Dados Factuais , Feminino , Seguimentos , Humanos , Incidência , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Curva ROC , Lesões por Radiação/etiologia , Radiometria/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Estudos Retrospectivos
18.
J Appl Clin Med Phys ; 19(5): 463-472, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959819

RESUMO

PURPOSE: This study evaluates the benefit of a virtual bolus method for volumetric modulated arc therapy (VMAT) plan optimization to compensate breast modifications that may occur during breast treatment. METHODS: Ten files were replanned with VMAT giving 50 Gy to the breast and 47 Gy to the nodes within 25 fractions. The planning process used a virtual bolus for the first optimization, then the monitors units were reoptimized without bolus, after fixing the segments shapes. Structures and treatment planning were exported on a second scanner (CT) performed during treatment as a consequence to modifications in patient's anatomy. The comparative end-point was clinical target volume's coverage. The first analysis compared the VMAT plans made using the virtual bolus method (VB-VMAT) to the plans without using it (NoVB-VMAT) on the first simulation CT. Then, the same analysis was performed on the second CT. Finally, the level of degradation of target volume coverage between the two CT using VB-VMAT was compared to results using a standard technique of forward-planned multisegment technique (Tan-IMRT). RESULTS: Using a virtual bolus for VMAT does not degrade dosimetric results on the first CT. No significant result in favor of the NoVB-VMAT plans was noted. The VB-VMAT method led to significant better dose distribution on a second CT with modified anatomies compared to NoVB-VMAT. The clinical target volume's coverage by 95% (V95%) of the prescribed dose was 98.9% [96.1-99.6] on the second CT for VB-VMAT compared to 92.6% [85.2-97.7] for NoVB-VMAT (P = 0.0002). The degradation of the target volume coverage for VB-VMAT is not worse than for Tan-IMRT: the median differential of V95% between the two CT was 0.9% for VMAT and 0.7% for Tan-IMRT (P = 1). CONCLUSION: This study confirms the safety and benefit of using a virtual bolus during the VMAT planning process to compensate potential breast shape modifications.


Assuntos
Neoplasias da Mama/radioterapia , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama
19.
Strahlenther Onkol ; 194(9): 843-854, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802435

RESUMO

PURPOSE: To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual's planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches. METHODS: Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system. RESULTS: All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002). CONCLUSIONS: High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.


Assuntos
Benchmarking , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Coluna Vertebral , Vértebras Torácicas , Idoso , Algoritmos , Fracionamento da Dose de Radiação , Humanos , Recidiva Local de Neoplasia/radioterapia , Órgãos em Risco , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Reirradiação , Procedimentos Cirúrgicos Robóticos/instrumentação , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Vértebras Torácicas/cirurgia
20.
Nano Lett ; 18(3): 1733-1738, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29406737

RESUMO

Nickel is capable of discharging electric and magnetic shocks in aerospace materials thanks to its conductivity and magnetism. Nickel nanowires are especially desirable for such an application as electronic percolation can be achieved without significantly increasing the weight of the composite material. In this work, single-crystal nickel nanowires possessing a homogeneous magnetic field are produced via a metal-organic precursor decomposition synthesis in solution. The nickel wires are 20 nm in width and 1-2 µm in length. The high anisotropy is attained through a combination of preferential crystal growth in the ⟨100⟩ direction and surfactant templating using hexadecylamine and stearic acid. The organic template ligands protect the nickel from oxidation, even after months of exposure to ambient conditions. These materials were studied using electron holography to characterize their magnetic properties. These thin nanowires display homogeneous ferromagnetism with a magnetic saturation (517 ± 80 emu cm-3), which is nearly equivalent to that of bulk nickel (557 emu cm-3). Nickel nanowires were incorporated into carbon composite test pieces and were shown to dramatically improve the electric discharge properties of the composite material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...