Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 38(9): 3106-18, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20089510

RESUMO

NikR is a transcriptional metalloregulator central in the mandatory response to acidity of Helicobacter pylori that controls the expression of numerous genes by binding to specific promoter regions. NikR/DNA interactions were proposed to rely on protein activation by Ni(II) binding to high-affinity (HA) and possibly secondary external (X) sites. We describe a biochemical characterization of HpNikR mutants that shows that the HA sites are essential but not sufficient for DNA binding, while the secondary external (X) sites and residues from the HpNikR dimer-dimer interface are important for DNA binding. We show that a second metal is necessary for HpNikR/DNA binding, but only to some promoters. Small-angle X-ray scattering shows that HpNikR adopts a defined conformation in solution, resembling the cis-conformation and suggests that nickel does not trigger large conformational changes in HpNikR. The crystal structures of selected mutants identify the effects of each mutation on HpNikR structure. This study unravels key structural features from which we derive a model for HpNikR activation where: (i) HA sites and an hydrogen bond network are required for DNA binding and (ii) metallation of a unique secondary external site (X) modulates HpNikR DNA binding to low-affinity promoters by disruption of a salt bridge.


Assuntos
Proteínas de Bactérias/química , Proteínas Repressoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mutação , Níquel/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Biochimie ; 88(11): 1693-705, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16930800

RESUMO

NikR proteins are bacterial metallo-regulatory transcription factors that control the expression of the nickel uptake system and/or nickel containing enzymes such as urease, and are involved in the acid stress response. Here, a comparative study is reported on NikR from Helicobacter pylori (HpNikR) and Escherichia coli (EcNikR), as well as the Q2E mutant of EcNikR. Most attention was focused on the Ni(II) binding properties of these proteins, as a function of pH. The influence of the pH on the Ni(II) binding and aggregation properties was studied using gel filtration analysis and UV-visible absorption spectroscopy in the presence of an increasing concentration of nickel. Q2E and wt EcNikR are identical in Ni(II) binding but the Q2E mutant is impaired to some extent in DNA-binding. For EcNikR it is shown that between pH 6 and 8, addition of Ni(II) above 1 equiv. induces mass aggregation and precipitation, concomitant with binding of Ni(II) up to a maximum of 5-8 Ni(II) ions per monomer. The Ni(II) site with highest affinity is the well-described square planar site with three histidines and one cysteine ligands. Aggregation is complete in the presence of less than 1 extra equiv. of Ni(II) and aggregation is fully reversible and precipitates are rapidly solubilized by addition of EDTA. The sensitivity of EcNikR to aggregation decreases with decreasing pH, concurrent with histidines being the main ligands of the site responsible for aggregation. HpNikR does not display aggregation except at alkaline pH, where 3 Ni(II) equiv. are needed. The participation of a cluster consisting of surface-exposed histidines present in EcNikR but not in HpNikR, is proposed to be involved in aggregation. Our results on HpNikR are compatible with the crystallographic data and with the ability of this protein to bind more than one nickel.


Assuntos
Proteínas de Escherichia coli/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromatografia em Gel , Primers do DNA , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA