Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 226: 105873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580170

RESUMO

In the 1990s, monoclonal antibodies (mAbs) progressed from scientific tools to advanced therapeutics, particularly for the treatment of cancers and autoimmune and inflammatory disorders. In the arena of infectious disease, the inauguration of mAbs as a post-exposure treatment in humans against Ebola virus (EBOV) occurred in response to the 2013-2016 West Africa outbreak. This review recounts the history of a candidate mAb treatment, ZMapp, beginning with its emergency use in the 2013-2016 outbreak and advancing to randomized controlled trials into the 2018-2020 African outbreak. We end with a brief discussion of the hurdles and promise toward mAb therapeutic use against infectious disease.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Ebolavirus/imunologia , Ebolavirus/efeitos dos fármacos , Anticorpos Antivirais/uso terapêutico , Anticorpos Antivirais/imunologia , Animais , Surtos de Doenças , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/imunologia , África Ocidental/epidemiologia
2.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675751

RESUMO

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

3.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38400125

RESUMO

This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.

4.
BMC Infect Dis ; 23(1): 764, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932678

RESUMO

BACKGROUND: Crimean Congo hemorrhagic fever (CCHF) is endemic in Southern Mauritania where recurrent outbreaks have been constantly observed since the 1980's. The present study is the first to assess CCHFV antibodies and RNA in humans. METHODS: A retrospective study was conducted using 263 humans and 1380 domestic animals serum samples, and 282 tick specimens of Hyalomma genus collected from 54 settings in 12 provinces across Mauritania. Antibodies targeting CCHF viral nucleoprotein were detected in animal and human sera using double-antigen ELISA. CCHFV specific RNA was detected in human and animal sera as well as tick supernatants using a CCHFV real time RT-PCR kit. Individual characteristics of sampled hosts were collected at the same time and data were geo-referenced. Satellite data of several environmental and climatic factors, were downloaded from publicly available datasets, and combined with data on livestock mobility, animal and human density, road accessibility and individual characteristics to identify possible risk factors for CCHFV spatial distribution. To this end, multivariate logistic models were developed for each host category (human, small and large ruminants). RESULTS: The overall CCHFV antibody prevalence was 11.8% [95% CI: 8.4-16.3] in humans (17.9% in 2020 and 5.4% in 2021; p = 0.0017) and 33.1% (95% CI: 30.1-36.3) in livestock. CCHFV-specific antibodies were detected in 91 (18.1%) out of 502 sheep, 43 (9.0%) out of 477 goats, 144 (90.5%) out of 161 dromedaries and 179 (74.6%) out of 240 cattle. CCHFV RNA was detected in only 2 (0.7%) sera out of 263 animals herders samples from Hodh El Gharbi province and in 32 (11.3%) out of 282 Hyalomma ticks. In humans as well as in animals, seropositivity was not associated with sex or age groups. The multivariate analysis determined the role of different environmental, climatic and anthropic factors in the spatial distribution of the disease with animal mobility and age being identified as risk factors. CONCLUSION: Results of the present study demonstrate the potential risk of CCHF for human population in Mauritania primarily those living in rural areas in close vicinity with animals. Future studies should prioritize an integrative human and veterinary approach for better understanding and managing Crimean-Congo hemorrhagic fever.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Saúde Única , Carrapatos , Humanos , Animais , Bovinos , Ovinos , Febre Hemorrágica da Crimeia/epidemiologia , Gado , Estudos Retrospectivos , Mauritânia , Cabras , Anticorpos Antivirais , RNA , Fatores de Risco , Estudos Soroepidemiológicos
5.
Emerg Microbes Infect ; 12(2): 2251595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649434

RESUMO

Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.


Assuntos
Infecções por HIV , Vacinas , Animais , Macaca mulatta , Vesiculovirus , Regulação para Cima , Antígenos Virais , Complicações Pós-Operatórias , Infecções por HIV/prevenção & controle
6.
Vaccines (Basel) ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36992174

RESUMO

BACKGROUND: The Hepatitis B virus (HBV) vaccine is used worldwide as an efficient tool to prevent the occurrence of chronic HBV infection and the subsequent liver disease. However, despite decades of vaccination campaigns, millions of new infections are still reported every year. Here, we aimed to assess the nationwide HBV vaccination coverage in Mauritania as well as the presence of protective levels of the antibodies against HBV surface antigen (HBsAb) following vaccination in a sample of children immunized as infants. METHODS: To evaluate the frequency of fully vaccinated and seroprotected children in Mauritania, a prospective serological study was conducted in the capital. First, we evaluated the pediatric HBV vaccine coverage in Mauritania between 2015 and 2020. Then, we examined the level of antibodies against HBV surface antigen (HBsAb) in 185 fully vaccinated children (aged 9 months to 12 years) by ELISA using the VIDAS hepatitis panel for Minividas (Biomerieux). These vaccinated children were sampled in 2014 or 2021. RESULTS: In Mauritania, between 2016 and 2019, more than 85% of children received the complete HBV vaccine regimen. While 93% of immunized children between 0 and 23 months displayed HBsAb titer >10 IU/L, the frequency of children with similar titers decreased to 63, 58 and 29% in children aged between 24-47, 48-59 and 60-144 months, respectively. CONCLUSIONS: A marked reduction in the frequency of HBsAb titer was observed with time, indicating that HBsAb titer usefulness as marker of protection is short lived and prompting the need for more accurate biomarkers predictive of long-term protection.

7.
Trop Med Infect Dis ; 8(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36828503

RESUMO

The mosquito-borne disease caused by the Rift Valley Fever Virus (RVFV) is a viral hemorrhagic fever that affects humans and animals. In 1987, RVFV emerged in Mauritania, which caused the first RVFV outbreak in West Africa. This outbreak was shortly followed by reported cases in humans and livestock in Senegal. Animal trade practices with neighboring Mauritania suggest northern regions of Senegal are at high risk for RVF. In this study, we aim to conduct a molecular and serological survey of RVFV in humans and livestock in Agnam (northeastern Senegal) by RT-PCR (reverse transcription real-time polymerase chain reaction) and ELISA (Enzyme-Linked Immunosorbent Assay), respectively. Of the two hundred fifty-five human sera, one (0.39%) tested RVFV IgM positive, while fifty-three (20.78%) tested positive for RVFV IgG. For animal monitoring, out of 30 sheep recorded and sampled over the study period, 20 (66.67%) showed seroconversion to RVFV IgG antibodies, notably during the rainy season. The presence of antibodies increased significantly with age in both groups (p < 0.05), as the force of RVF infection (FOI), increased by 16.05% per year for humans and by 80.4% per month for livestock sheep. This study supports the usefulness of setting up a One Health survey for RVF management.

8.
Emerg Microbes Infect ; 12(1): e2169198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36655944

RESUMO

During a pandemic, effective vaccines are typically in short supply, particularly at onset intervals when the wave is accelerating. We conducted an observational, retrospective analysis of aggregated data from all patients who tested positive for SARS-CoV-2 during the waves caused by the Delta and Omicron variants, stratified based on their known previous infection and vaccination status, throughout the University of Texas Medical Branch (UTMB) network. Next, the immunity statuses within each medical parameter were compared to naïve individuals for the effective decrease of occurrence. Lastly, we conducted studies using mice and pre-pandemic human samples for IgG responses to viral nucleocapsid compared to spike protein toward showing a functional component supportive of the medical data results in relation to the immunity types. During the Delta and Omicron waves, both infection-induced and hybrid immunities were associated with a trend of equal or greater decrease of occurrence than vaccine-induced immunity in hospitalizations, intensive care unit admissions, and deaths in comparison to those without pre-existing immunity, with hybrid immunity often trending with the greatest decrease. Compared to individuals without pre-existing immunity, those vaccinated against SARS-CoV-2 had a significantly reduced incidence of COVID-19, as well as all subsequent medical parameters. Though vaccination best reduces health risks associated with initial infection toward acquiring immunity, our findings suggest infection-induced immunity is as or more effective than vaccination in reducing the severity of reinfection from the Delta or Omicron variants, which should inform public health response at pandemic onset, particularly when triaging towards the allotment of in-demand vaccinations.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Reinfecção , SARS-CoV-2 , Estudos Retrospectivos , Hospitalização
9.
Biomedicines ; 10(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36289776

RESUMO

Human metapneumovirus (HMPV) and human respiratory virus (HRSV) are two leading causes of acute respiratory tract infection in young children. While there is no licensed drug against HMPV, the monoclonal antibody (mAb) Palivizumab is approved against HRSV for prophylaxis use only. Novel therapeutics against both viruses are therefore needed. Here, we describe the identification of human mAbs targeting these viruses by using flow cytometry-based cell sorting. One hundred and two antibodies were initially identified from flow cytometry-based cell sorting as binding to the fusion protein from HRSV, HMPV or both. Of those, 95 were successfully produced in plants, purified and characterized for binding activity by ELISA and neutralization assays as well as by inhibition of virus replication in mice. Twenty-two highly reactive mAbs targeting either HRSV or HMPV were isolated. Of these, three mAbs inhibited replication in vivo of a single virus while one mAb could reduce both HRSV and HMPV titers in the lung. Overall, this study identifies several human mAbs with virus-specific therapeutic potential and a unique mAb with inhibitory activities against both HRSV and HMPV.

10.
Trop Med Infect Dis ; 7(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288065

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is widespread in Asia, Europe, and Africa. In Senegal, sporadic cases of CCHFV have been reported since 1960. Bordering Mauritania in northeastern Senegal, Agnam is an arid area in the region of Matam where CCHFV is endemic, which harbors a pastoralist community. Given the drought conditions of Agnam, inhabitants are in constant movement with their animals in search of pasture, which brings them into contact with pathogens such as arboviruses. To identify CCHFV in this area, we established a One Health site in order to analyze animal livestock, ticks and human samples collected over a one-year period by qRT-PCR and ELISA. Our analysis showed one (1/364) patient carried anti-CCHFV IgM and thirty-seven carried anti-CCHFV IgG (37/364). In livestock, anti-CCHFV IgG was detected in 13 (38.24%) of 34 sentinel sheep. The risk of CCHFV infection increased significatively with age in humans (p-value = 0.00117) and sheep (p-value = 1.18 × 10-11). Additional risk factors for CCHFV infection in sheep were dry seasons (p-value = 0.004) and time of exposure (p-value = 0.007). Furthermore, we detected a total of three samples with CCHFV RNA within Rhipicephalus evertsi evertsi and Rhipicephalus guilhoni tick species. Our results highlighted the usefulness of a One Health survey of CCHFV in pastoral communities at risk of arboviruses.

11.
Sci Rep ; 12(1): 12962, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902675

RESUMO

Early predictions forecasted large numbers of severe acute respiratory syndrome coronavirus (SARS-CoV-2) cases and associated deaths in Africa. To date, Africa has been relatively spared. Various hypotheses were postulated to explain the lower than anticipated impact on public health in Africa. However, the contribution of pre-existing immunity is yet to be investigated. In this study, the presence of antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in pre-pandemic samples from Africa, Europe, South and North America was examined by ELISA. The protective efficacy of N specific antibodies isolated from Central African donors was tested by in vitro neutralization and in a mouse model of SARS-CoV-2 infection. Antibodies against SARS-CoV-2 S and N proteins were rare in all populations except in Gabon and Senegal where N specific antibodies were prevalent. However, these antibodies failed to neutralize the virus either in vitro or in vivo. Overall, this study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. However, this pre-existing humoral immunity does not impact viral fitness in rodents suggesting that other human immune defense mechanisms could be involved. In Africa, seroprevalence studies using the N protein are over-estimating SARS-CoV-2 circulation.


Assuntos
COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Senegal , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
12.
J Virol Methods ; 308: 114586, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850366

RESUMO

Serology-based diagnosis remains one of the major tools for diagnosis and surveillance of infectious diseases. However, for many neglected diseases no or only few commercial assays are available and often with prices prohibiting large scale testing in low and middle-income countries (LMICs). We developed an adaptable enzyme-linked immunoassay (ELISA) using hepatitis C virus (HCV) as a proof-of-concept application. By combining the maltose-binding-protein with a multiepitope HCV protein, we were able to obtain a high concentration of protein suitable for downstream applications. Following optimization, the assay was verified using previously tested human samples from Canada, Denmark and Gabon in parallel with the use of a commercial protein. Sensitivity and specificity were calculated to 98 % and 97 % respectively, after accounting for non-specific binding and assay optimization. This study provides a thorough description of the development, and validation of a multiepitope ELISA-based diagnostic assay against HCV, which could be implemented at low cost. The described methodology can be readily adapted to develop novel ELISA-based diagnostic assays for other infectious pathogens with well-described immunogenic epitopes. This method could improve the diagnosis of neglected diseases for which affordable diagnostic assays are lacking.


Assuntos
Hepacivirus , Hepatite C , Ensaio de Imunoadsorção Enzimática/métodos , Hepatite C/diagnóstico , Anticorpos Anti-Hepatite C , Antígenos da Hepatite C , Humanos , Doenças Negligenciadas , Sensibilidade e Especificidade
13.
NPJ Vaccines ; 7(1): 49, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474311

RESUMO

The SARS-CoV-2 pandemic is an ongoing threat to global health, and wide-scale vaccination is an efficient method to reduce morbidity and mortality. We designed and evaluated two DNA plasmid vaccines, based on the pIDV-II system, expressing the SARS-CoV-2 spike gene, with or without an immunogenic peptide, in mice, and in a Syrian hamster model of infection. Both vaccines demonstrated robust immunogenicity in BALB/c and C57BL/6 mice. Additionally, the shedding of infectious virus and the viral burden in the lungs was reduced in immunized hamsters. Moreover, high-titers of neutralizing antibodies with activity against multiple SARS-CoV-2 variants were generated in immunized animals. Vaccination also protected animals from weight loss during infection. Additionally, both vaccines were effective at reducing both pulmonary and extrapulmonary pathology in vaccinated animals. These data show the potential of a DNA vaccine for SARS-CoV-2 and suggest further investigation in large animal and human studies could be pursued.

14.
Curr Opin Virol ; 54: 101210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35287095

RESUMO

Ebola virus (EBOV) outbreaks can claim thousands of lives, cripple healthcare systems and local economies. Effective vaccines and treatments against EBOV are therefore needed to limit the impact of this deadly disease. In 2019, a hallmark clinical trial demonstrated the efficacy of monoclonal antibody (mAb) against EBOV. Despite, this recent success, survival of individuals with high viremia remains low. Effective immunotherapies against other Ebolavirus species are still under pre-clinical development. More importantly, the cost of immunotherapies is prohibitive to most individual and affected countries. Novel manufacturing and administration strategies of mAb protein or genetic information could substantially reduce the cost of immunotherapies; hence making them valuable tools against EBOV and other infectious agents.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Surtos de Doenças , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Humanos
15.
J Infect Dis ; 225(10): 1852-1855, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34791300

RESUMO

Numerous studies have demonstrated the importance of the adaptive immunity for survival following Ebola virus (EBOV) infection. To evaluate the contribution of tissue damage to EBOV-induced immune suppression, acute liver damage or hemolysis, 2 symptoms associated with lethal EBOV infection, were chemically induced in vaccinated mice. Results show that either liver damage or hemolysis was sufficient to inhibit the host humoral response against EBOV glycoprotein and to drastically reduce the level of circulating T cells. This study thus provides a possible mechanism for the limited specific antibody production and lymphopenia in individuals with lethal hemorrhagic fever infections.


Assuntos
Formação de Anticorpos , Doença pelo Vírus Ebola , Linfopenia , Animais , Anticorpos Antivirais , Ebolavirus , Glicoproteínas , Hemólise , Doença pelo Vírus Ebola/imunologia , Fígado/patologia , Fígado/virologia , Linfopenia/virologia , Camundongos
16.
J Infect Dis ; 226(4): 616-624, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626109

RESUMO

Many characteristics associated with Ebola virus disease remain to be fully understood. It is known that direct contact with infected bodily fluids is an associated risk factor, but few studies have investigated parameters associated with transmission between individuals, such as the dose of virus required to facilitate spread and route of infection. Therefore, we sought to characterize the impact by route of infection, viremia, and viral shedding through various mucosae, with regards to intraspecies transmission of Ebola virus in a nonhuman primate model. Here, challenge via the esophagus or aerosol to the face did not result in clinical disease, although seroconversion of both challenged and contact animals was observed in the latter. Subsequent intramuscular or intratracheal challenges suggest that viral loads determine transmission likelihood to naive animals in an intramuscular-challenge model, which is greatly facilitated in an intratracheal-challenge model where transmission from challenged to direct contact animal was observed consistently.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Macaca mulatta , Carga Viral , Viremia
17.
Vaccine ; 39(49): 7175-7181, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774358

RESUMO

The development of new, low-cost vaccines and effective gene therapies requires accurate delivery and high-level expression of candidate genes. We developed a plasmid vector, pIDV-II, that allows for both easy manipulation and high expression of exogenous genes in mammalian cells. This plasmid is based upon the pVax1 plasmid and shares a common structure with typical mammalian transcription units. It is composed of a chicken ß-actin promoter (CAG), followed by an intron and flanked by two restriction sites, and also includes a post-transcriptional regulatory element, followed by a transcriptional termination signal. While the modification of pVax1 elements either decreased eGFP expression levels or had no effect at all, replacement of the promoter, the poly-A signal, deletion of the T7 and AmpR promoters, and inversion of the ORI-Neo/Kan cassette, significantly increased in vitro eGFP expression with the modified plasmid called pIDV-II. To further evaluate our vector, expression levels of three viral antigens were compared in cell lines transfected either with pVax1 or pCAGGS backbones as controls. Higher transgene expression was consistently observed with pIDV-II. The humoral and cellular responses generated in mice immunized with pIDV-II vs pVax1 expressing each viral antigen individually were superior by 2-fold or more as measured by ELISA and ELISPOT assays. Overall these results indicate that pIDV-II induces robust transgene expression, with concomitant improved cellular and humoral immune responses against the transgene of interest over pVax1. The new vector, pIDV-II, offers an additional alternative for DNA based vaccination and gene therapy for animal and human use.


Assuntos
Vacinas de DNA , Animais , DNA , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Transgenes , Vacinas de DNA/genética
18.
Sci Rep ; 11(1): 18204, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521922

RESUMO

Available therapeutics for autoimmune disorders focused on mitigating symptoms, rather than treating the cause of the disorder. A novel approach using adeno-associated virus (AAV) could restore tolerance to the autoimmune targets and provide a permanent treatment for autoimmune diseases. Here, we evaluated the ability of collagen II T-cell epitopes packaged in adeno-associated virus serotype 8 (AAV-8) vectors to reduce pathogenic cellular and humoral responses against collagen and to mitigate the disease in the collagen-induced arthritis mouse model. The cytokines and immune cells involved in the immune suppression were also investigated. Mice treated with AAV-8 containing collagen II T-cell epitopes demonstrated a significant reduction in the arthritis symptoms, pathogenic collagen specific antibody and T cell responses. The AAV-8 mediated immune suppression was mediated by increased interleukin-10 expression and regulatory T cells expansion. Altogether, this study strengthens the notion that AAV vectors are promising candidates for the treatment of autoimmune diseases.


Assuntos
Artrite Experimental/terapia , Terapia de Imunossupressão/métodos , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Células Cultivadas , Colágeno Tipo II/imunologia , Dependovirus/genética , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos DBA
19.
Biomedicines ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572372

RESUMO

Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4-46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA