Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(6): 067002, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822056

RESUMO

Optimally doped cuprate are characterized by the presence of superconducting fluctuations in a relatively large temperature region above the critical transition temperature. We reveal here that the effect of thermal disorder, which decreases the condensate phase coherence at equilibrium, can be dynamically contrasted by photoexcitation with ultrashort midinfrared pulses. In particular, our findings reveal that light pulses with photon energy comparable to the amplitude of the superconducting gap and polarized in plane along the copper-copper direction can dynamically enhance the optical response associated with the onset of superconductivity. We propose that this effect can be rationalized by an effective d-wave BCS model, which reveals that midinfrared pulses result in a transient increase of the phase coherence.

2.
Nat Commun ; 4: 2476, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24048228

RESUMO

Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.

3.
Nat Mater ; 12(10): 882-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892787

RESUMO

As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.

4.
Nat Mater ; 12(6): 535-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23524373

RESUMO

Josephson plasma waves are linear electromagnetic modes that propagate along the planes of cuprate superconductors, sustained by interlayer tunnelling supercurrents. For strong electromagnetic fields, as the supercurrents approach the critical value, the electrodynamics become highly nonlinear. Josephson plasma solitons (JPSs) are breather excitations predicted in this regime, bound vortex-antivortex pairs that propagate coherently without dispersion. We experimentally demonstrate the excitation of a JPS in La1.84Sr0.16CuO4, using intense narrowband radiation from an infrared free-electron laser tuned to the 2-THz Josephson plasma resonance. The JPS becomes observable as it causes a transparency window in the opaque spectral region immediately below the plasma resonance. Optical control of magnetic-flux-carrying solitons may lead to new applications in terahertz-frequency plasmonics, in information storage and transport and in the manipulation of high-Tc superconductivity.

5.
Phys Rev Lett ; 106(1): 016401, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231756

RESUMO

The transient optical conductivity of photoexcited 1T-TaS2 is determined over a three-order-of-magnitude frequency range. Prompt collapse and recovery of the Mott gap is observed. However, we find important differences between this transient metallic state and that seen across the thermally driven insulator-metal transition. Suppressed low-frequency conductivity, Fano phonon line shapes, and a midinfrared absorption band point to polaronic transport. This is explained by noting that the photoinduced metallic state of 1T-TaS2 is one in which the Mott gap is melted but the lattice retains its low-temperature symmetry, a regime only accessible by photodoping.

6.
Science ; 331(6014): 189-91, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21233381

RESUMO

One of the most intriguing features of some high-temperature cuprate superconductors is the interplay between one-dimensional "striped" spin order and charge order, and superconductivity. We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound, nonsuperconducting La(1.675)Eu(0.2)Sr(0.125)CuO(4), into a transient three-dimensional superconductor. The emergence of coherent interlayer transport was evidenced by the prompt appearance of a Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is significantly faster than expected. This places stringent new constraints on our understanding of stripe order and its relation to superconductivity.

7.
Acta Crystallogr B ; 61(Pt 5): 481-5, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186647

RESUMO

A single-crystal X-ray structure study of gadolinium triiron tetraborate, GdFe3(BO3)4, at room temperature and at 90 K is reported. At room temperature GdFe3(BO3)4 crystallizes in a trigonal space group, R32 (No. 155), the same as found for other members of the iron borate family RFe3(BO3)4. At 90 K the structure of GdFe3(BO3)4 transforms to the space group P3(1)21 (No. 152). The low-temperature structure determination gives new insight into the weakly first-order structural phase transition at 156 K and into the related Raman phonon anomalies. The presence of two inequivalent iron chains in the low-temperature structure provides a new perspective on the interpretation of the low-temperature magnetic properties.


Assuntos
Boratos/química , Gadolínio/química , Ferro/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Transição de Fase , Software , Análise Espectral Raman , Temperatura
8.
Stud Cl Orient ; 22: 85-110, 1973.
Artigo em Italiano | MEDLINE | ID: mdl-11633325
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...