Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 65(21): 215030, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32736371

RESUMO

The proof of concept of a new device, capable of determining in a few seconds the energy of clinical proton beams by measuring the time of flight (ToF) of protons, is presented. The prototype consists of two thin ultra fast silicon detector (UFSD) pads, aligned along the beam direction in a telescope configuration and readout by a digitizer. The method developed for extracting the energy at the isocenter from the measured ToF, validated by Monte Carlo simulations, and the procedure used to calibrate the system are also presented and discussed in detail. The prototype was tested at the Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy), at several beam energies, covering the entire clinical range, and using different distances between the sensors. The measured beam energies were benchmarked against the nominal CNAO energy values, obtained during the commissioning of the centre from the measured ranges in water. Deviations of few hundreds of keV have been achieved for all considered proton beam energies for distances between the two sensors larger than 60 cm, indicating a sensitivity to the corresponding beam range in water smaller than the clinical tolerance of 1 mm. Moreover, few seconds of irradiation were necessary to collect the required statistics. These preliminary results indicate that a telescope of UFSDs could achieve in a short time the accuracy required for the clinical application and therefore encourage further investigations towards the improvement and the optimization of the present prototype.


Assuntos
Terapia com Prótons/métodos , Estudos de Viabilidade , Humanos , Método de Monte Carlo , Terapia com Prótons/instrumentação , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med ; 60: 139-149, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31000074

RESUMO

PURPOSE: To describe a new system for scanned ion beam therapy, named RIDOS (Real-time Ion DOse planning and delivery System), which performs real time delivered dose verification integrating the information from a clinical beam monitoring system with a Graphic Processing Unit (GPU) based dose calculation in patient Computed Tomography. METHODS: A benchmarked dose computation algorithm for scanned ion beams has been parallelized and adapted to run on a GPU architecture. A workstation equipped with a NVIDIA GPU has been interfaced through a National Instruments PXI-crate with the dose delivery system of the Italian National Center of Oncological Hadrontherapy (CNAO) to receive in real-time the measured beam parameters. Data from a patient monitoring system are also collected to associate the respiratory phases with each spot during the delivery of the dose. Using both measured and planned spot properties, RIDOS evaluates during the few seconds of inter-spill time the cumulative delivered and prescribed dose distributions and compares them through a fast γ-index algorithm. RESULTS: The accuracy of the GPU-based algorithms was assessed against the CPU-based ones and the differences were found below 1‰. The cumulative planned and delivered doses are computed at the end of each spill in about 300 ms, while the dose comparison takes approximatively 400 ms. The whole operation provides the results before the next spill starts. CONCLUSIONS: RIDOS system is able to provide a fast computation of the delivered dose in the inter-spill time of the CNAO facility and allows to monitor online the dose deposition accuracy all along the treatment.


Assuntos
Algoritmos , Íons/uso terapêutico , Sistemas On-Line , Dosagem Radioterapêutica , Computadores , Humanos , Respiração , Síncrotrons , Fatores de Tempo
3.
Phys Med Biol ; 63(8): 08NT01, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29537391

RESUMO

One major rationale for the application of heavy ion beams in tumour therapy is their increased relative biological effectiveness (RBE). The complex dependencies of the RBE on dose, biological endpoint, position in the field etc require the use of biophysical models in treatment planning and clinical analysis. This study aims to introduce a new software, named 'Survival', to facilitate the radiobiological computations needed in ion therapy. The simulation toolkit was written in C++ and it was developed with a modular architecture in order to easily incorporate different radiobiological models. The following models were successfully implemented: the local effect model (LEM, version I, II and III) and variants of the microdosimetric-kinetic model (MKM). Different numerical evaluation approaches were also implemented: Monte Carlo (MC) numerical methods and a set of faster analytical approximations. Among the possible applications, the toolkit was used to reproduce the RBE versus LET for different ions (proton, He, C, O, Ne) and different cell lines (CHO, HSG). Intercomparison between different models (LEM and MKM) and computational approaches (MC and fast approximations) were performed. The developed software could represent an important tool for the evaluation of the biological effectiveness of charged particles in ion beam therapy, in particular when coupled with treatment simulations. Its modular architecture facilitates benchmarking and inter-comparison between different models and evaluation approaches. The code is open source (GPL2 license) and available at https://github.com/batuff/Survival.


Assuntos
Terapia com Prótons/métodos , Radiobiologia/métodos , Humanos , Cinética , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Software
4.
Phys Med ; 32(6): 831-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27246359

RESUMO

PURPOSE: The quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements. METHODS: MatriXX is a commercial detector composed of 32×32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44MeV proton and a 221.45MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia - Italy, and the results were analyzed and compared. RESULTS: The sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230µm for carbon ions and less than 100µm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement. CONCLUSIONS: The results indicate that a 2D detector such as MatriXX can be used to measure several parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.


Assuntos
Radioterapia com Íons Pesados/normas , Terapia com Prótons/normas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/instrumentação , Estudos de Viabilidade , Dosagem Radioterapêutica
5.
Cell Death Differ ; 20(11): 1498-509, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933816

RESUMO

Werner syndrome (WS) results from dysfunction of the WRN protein, and is associated with premature aging and early death. Here we report that loss of WRN function elicits accumulation of the Yes-associated protein (YAP protein), a major effector of the Hippo tumor suppressor pathway, both experimentally and in WS-derived fibroblasts. YAP upregulation correlates with slower cell proliferation and accelerated senescence, which are partially mediated by the formation of a complex between YAP and the PML protein, whose activity promotes p53 activation. The ATM kinase is necessary for YAP and PML accumulation in WRN-depleted cells. Notably, the depletion of either YAP or PML partially impairs the induction of senescence following WRN loss. Altogether, our findings reveal that loss of WRN activity triggers the activation of an ATM-YAP-PML-p53 axis, thereby accelerating cellular senescence. The latter has features of SASP (senescence-associated secretory phenotype), whose protumorigenic properties are potentiated by YAP, PML and p53 depletion.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular , Senescência Celular/fisiologia , Exodesoxirribonucleases/deficiência , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Proteína da Leucemia Promielocítica , RecQ Helicases/deficiência , Transdução de Sinais , Transfecção , Helicase da Síndrome de Werner , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...