Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(34): 40762-40771, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37595125

RESUMO

Despite the great success of hybrid CH3NH3PbI3 perovskite in photovoltaics, ascribed to its excellent optical absorption properties, its instability toward moisture is still an insurmountable drawback. All-inorganic perovskites are much less sensitive to humidity and have potential interest for solar cell applications. Alternative strategies have been developed to design novel materials with appealing properties, which include different topologies for the octahedral arrangements from three-dimensional (3D, e.g., CsPbBr3 perovskite) or two-dimensional (2D, e.g., CsPb2Br5) to zero-dimensional (0D, i.e., without connection between octahedra), as the case of Cs4PbX6 (X = Br, I) halides. The crystal structure of these materials is complex, and their thermal evolution is unexplored. In this work, we describe the synthesis of Cs4PbBr6-xIx (x = 0, 2, 4, 6) halides by mechanochemical procedures with green credentials; these specimens display excellent crystallinity enabling a detailed structural investigation from synchrotron X-ray powder diffraction (SXRD) data, essential to revisit some features in the temperature range of 90-298 K. In all this regime, the structure is defined in the trigonal R3̅c space group (#167). The presence of Cs and X vacancies suggests some ionic mobility into the crystal structure of these 0D halides. Bond valence maps (BVMs) are useful in determining isovalent surfaces for both Cs4PbBr6 and Cs4PbI6 phases, unveiling the likely ionic pathways for cesium and bromide ions and showing a full 3D connection in the bromide phase, in contrast to the iodide one. On the other hand, the evolution of the anisotropic displacement parameters is useful to evaluate the Debye temperatures, confirming that Cs atoms have more freedom to move, while Pb is more confined at its site, likely due to a higher covalency degree in Pb-X bonds than that in Cs-X bonds. Diffuse reflectance ultraviolet-visible (UV-vis) spectroscopy shows that the optical band gap can be tuned depending on iodine content (x) in the range of 3.6-3.06 eV. From density functional theory (DFT) simulations, the general trend of reducing the band gap when Br is replaced by I is well reproduced.

2.
Small ; 19(30): e2300616, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035942

RESUMO

Nickel-rich layered oxides are adopted as electrode materials for EV's. They suffer from a capacity loss when the cells are charged above 4.15 V versus Li/Li+ . Doping and coating can lead to significant improvement in cycling. However, the mechanisms involved at high voltage are not clear. This work is focused on LiNiO2 to overcome the effect of M cations. Galvanostatic intermittent titration technique (GITT) and in situ X-ray diffraction (XRD) experiments are performed at very low rates in various voltage ranges (3.8-4.3 V,). On the "4.2-4.3 V" plateau the R2 phase is transformed simultaneously in R3, R3 with H4 stacking faults and H4. As the charge proceeds above 4.17 V cell polarization increases, hindering Li deintercalation. In discharge, such polarization decreases immediately. Upon cycling, the polarization increases at each charge above 4.17 V. In discharge, the capacity and dQ/dV features below 4.1 V remain constant and unaffected, suggesting that the bulk of the material do not undergo significant structural defect. This study shows that the change in polarization results from the electrochemical behavior of the grain surface having very low conductivity above 4.17 V and high conductivity below this threshold. This new approach can explain the behavior observed with dopants like tungsten.

3.
Chem Sci ; 14(7): 1641-1665, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819848

RESUMO

Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. Operando experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic. The former includes the improvement of cell designs, multi-modal characterization and development of protocols for automated or at least semi-automated data analysis to quickly process the huge amount of data resulting from operando experiments. Given the recent evolution in these areas, accelerated progress is expected in the years to come, which should in turn foster battery performance improvements.

4.
Mater Horiz ; 8(8): 2325-2329, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846437

RESUMO

Mixed-valent transition-metal compounds display complex structural, electronic and magnetic properties, which often intricately coexist. Here, we report the new ternary oxide GaV4O8, a structural sibling of skyrmion-hosting lacunar spinels. GaV4O8 contains a vanadium trimer and an original spin-orbital-charge texture that forms upon the structural phase transition at TS = 68 K followed by the magnetic transition at TN = 35 K. The texture arises from the coexistence of orbital molecules on the vanadium trimers and localized electrons on the remaining vanadium atoms. Such hybrid electrons create opportunities for novel types of spin, charge, and orbital order in mixed-valent transition-metal compounds.


Assuntos
Elétrons , Vanádio , Eletrônica , Magnetismo , Óxidos , Vanádio/química
5.
Inorg Chem ; 60(23): 17824-17836, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743519

RESUMO

A new series of Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) hexagonal double perovskite oxides have been synthesized by a solid-state reaction method by substituting Ba with Bi. The polycrystalline materials are structurally characterized by the laboratory X-ray diffraction, synchrotron X-ray, and neutron powder diffraction. The lattice parameters are found to increase with increasing Bi doping despite the smaller ionic radius of Bi3+ compared to Ba2+. The expansion is attributed to the reduction of Co/Ru-site cations. Scanning electron microscopy further shows that the grain size increases with the Bi content. All Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) samples exhibit p-type behavior, and the electrical resistivity (ρ) is consistent with a small polaron hopping model. The Seebeck coefficient (S) and thermal conductivity (κ) are improved significantly with Bi doping. High values of the power factor (PF ∼ 6.64 × 10-4 W/m·K2) and figure of merit (zT ∼ 0.23) are obtained at 618 K for the x = 0.6 sample. These results show that Bi doping is an effective approach for enhancing the thermoelectric properties of hexagonal Ba2-xBixCoRuO6 perovskite oxides.

6.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683627

RESUMO

Hybrid methyl-ammonium (MA:CH3NH3+) lead halide MAPbX3 (X = halogen) perovskites exhibit an attractive optoelectronic performance that can be applied to the next generation of solar cells. To extend the field of interest of these hybrid materials, we describe the synthesis by a solvent-free ball-milling procedure, yielding a well crystallized, pure and moisture stable specimen of the Cd tribromide counterpart, MACdBr3, which contains chains of face-sharing CdBr6 octahedra in a framework defined in the Cmc21 (No 36) space group. The details of the structural arrangement at 295 K have been investigated by high angular resolution synchrotron x-ray diffraction (SXRD), including the orientation of the organic MA units, which are roughly aligned along the c direction, given the acentric nature of the space group. UV-vis spectra unveil a gap of 4.6 eV, which could be useful for ultraviolet detectors.

7.
Chem Mater ; 33(14): 5652-5667, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34483480

RESUMO

Solid electrolytes are crucial for next-generation solid-state batteries, and Na3PS4 is one of the most promising Na+ conductors for such applications, despite outstanding questions regarding its structural polymorphs. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na3PS4 over a wide temperature range 30 < T < 600 °C through combined experimental-computational analysis. Although Bragg diffraction experiments indicate a second-order phase transition from the tetragonal ground state (α, P4̅21 c) to the cubic polymorph (ß, I4̅3m) above ∼250 °C, pair distribution function analysis in real space and Raman spectroscopy indicate remnants of a tetragonal character in the range 250 < T < 500 °C, which we attribute to dynamic local tetragonal distortions. The first-order phase transition to the mesophasic high-temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid-like dynamics for sodium-cations (translational) and thiophosphate-polyanions (rotational) evident by inelastic neutron and Raman spectroscopies, as well as pair-distribution function and molecular dynamics analyses. These results shed light on the rich polymorphism of Na3PS4 and are relevant for a range host of high-performance materials deriving from the Na3PS4 structural archetype.

8.
ACS Appl Mater Interfaces ; 13(36): 42682-42692, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478252

RESUMO

Sodium-rich iron hexacyanoferrates were prepared by coprecipitation, hydrothermal route, and under reflux, with or without dehydration. They were obtained with different structures described in cubic, orthorhombic, or rhombohedral symmetry, with variable compositions in sodium, water, and cationic vacancies and with a variety of morphologies. This series of sodium-rich Prussian blue analogues allowed addressing the relationship between synthesis conditions, composition, structure, morphology, and electrochemical properties in Na-ion batteries. A new orthorhombic phase with the Na1.8Fe2(CN)6·0.7H2O composition synthesized by an hydrothermal route at 140 °C is reported for the first time, whereas a phase of Na2Fe2(CN)6·2H2O composition obtained under reflux, previously described with a monoclinic structure, shows in fact a rhombohedral structure.

9.
Inorg Chem ; 60(18): 14310-14317, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34472850

RESUMO

The reaction between P2-type honeycomb layered oxides Na2Ni2TeO6 and K2Ni2TeO6 enables the formation of NaKNi2TeO6. The compound is characterized by X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy, and the structure is discussed through density functional theory calculations. In addition to the honeycomb Ni/Te cationic ordering, NaKNi2TeO6 exhibits a unique example of alternation of sodium and potassium layers instead of a random alkali-mixed occupancy. Stacking fault simulations underline the impact of the successive position of the Ni/Te honeycomb layers and validate the presence of multiple stacking sequences within the powder material, in proportions that evolve with the synthesis conditions. In a broader context, this work contributes to a better understanding of the alkali-mixed layered compounds.

10.
Nat Mater ; 20(11): 1545-1550, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326505

RESUMO

Insertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show the feasibility of reversibly intercalating Li+ electrochemically into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes (5 M LiFSI in dimethyl carbonate), hence opening access to a family of LixVX3 phases. Moreover, through an electrolyte engineering approach, we unambiguously prove that the positive attribute of superconcentrated electrolytes against the solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications including Li-ion batteries and beyond.


Assuntos
Eletrólitos , Lítio , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Eletrólitos/química , Lítio/química
11.
Dalton Trans ; 50(20): 7085-7093, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33949539

RESUMO

Rare-earth nickelates RNiO3 (R = Y, LaLu) are electron-correlated perovskite materials where the interplay between charge and spin order results in a rich phase diagram, evolving from antiferromagnetic insulators to paramagnetic metals. They are well-known to undergo metal-insulator (MI) transitions as a function of temperature and the size of the rare-earth ion. For intermediate-size Eu3+ and Gd3+ ions, the MI transitions are described to happen at TMI = 463 K and 511 K, respectively. We have investigated their structural evolution across TMI with the excellent angular resolution of synchrotron X-ray diffraction, using high-crystalline quality samples prepared at elevated hydrostatic pressures. Unlike YNiO3, synthesized and measured under the same conditions, exhibiting a characteristic monoclinic phase (space group P21/n) in the insulating regime (below TMI), the present EuNiO3 and GdNiO3 samples do not exhibit such a symmetry, but their crystal structures can be defined in an orthorhombic superstructure of perovskite (space group Pbnm) in all the temperature interval, between 100 and 623 K for Eu and 298 K and 650 K for Gd. Nevertheless, an abrupt evolution of the unit-cell parameters is observed upon metallization above TMI. A prior report of a charge disproportionation effect by Mössbauer spectroscopy on Fe-doped perovskite samples seems to suggest that the distribution of two distinct Ni sites must not exhibit the required long-range ordering to be effectively detected by diffraction methods. An abrupt contraction of the b parameter of EuNiO3 in the 175-200 K range, coincident with the onset of antiferromagnetic ordering, suggests a magnetoelastic coupling, not described so far in rare-earth nickelates. The magnetic susceptibility is dominated by the paramagnetic signal of the rare-earth ions; however, the AC susceptibility curves yield a Néel temperature corresponding to the antiferromagnetic ordering of the Ni moments of TN = 197 K for EuNiO3, corroborated by specific heat measurements. For GdNiO3, a χT vs. T plot presents a clear change in the slope at TN = 187 K, also consistent with specific heat data. Magnetization measurements at 2 K under large fields up to 14 T show a complete saturation of the magnetic moments with a rather high ordered moment of 7.5µB per f.u.

12.
Inorg Chem ; 59(20): 14932-14943, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33006896

RESUMO

Black phosphorus (BP) allotrope has an orthorhombic crystal structure with a narrow bandgap of 0.35 eV. This material is promising for 2D technology since it can be exfoliated down to one single layer: the well-known phosphorene. In this work, bulk BP was synthesized under high-pressure conditions at high temperatures. A detailed structural investigation using neutron and synchrotron X-ray diffraction revealed the occurrence of anisotropic strain effects on the BP lattice; the combination of both sets of diffraction data allowed visualization of the lone electron pair 3s2. Temperature-dependent neutron diffraction data collected at low temperature showed that the a axis (zigzag) exhibits a quasi-temperature-independent thermal expansion in the temperature interval from 20 up to 150 K. These results may be a key to address the anomalous behavior in electrical resistivity near 150 K. Thermoelectric properties were also provided; low thermal conductivity from 14 down to 6 Wm-1K-1 in the range 323-673 K was recorded in our polycrystalline BP, which is below the reported values for single-crystals in literature.

13.
J Am Chem Soc ; 142(43): 18422-18436, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054192

RESUMO

Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na3PS4 are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg and pair distribution function), spectroscopy (impedance, Raman, NMR and INS), and ab initio simulations aimed at elucidating the synthesis-property relationships in Na3PS4. We consolidate previously reported interpretations regarding the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na+ migration in Na3PS4, which is ∼30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na3PS4 to ∼10-4 S/cm can be reproduced by applying external pressure on a sample from conventional high-temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain, and activation volume.

14.
Inorg Chem ; 59(21): 15757-15771, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075223

RESUMO

We have investigated the role of oxygen stoichiometry and structural properties in the modulation of Co valence and spin state in single-layer La2-xAxCoO4±Î´ (A = Sr, Ca; 0 ≤ x ≤ 1) perovskites as well as the interplay between their local structural properties and the magnetic and charge-ordering phenomena. We show the results of high angular resolution powder X-ray diffraction and Co K-edge X-ray absorption and emission spectroscopy experiments on polycrystalline and single-crystal samples. The different doping-induced changes in the Co valence and spin state by Ca (or Sr) substitution can be understood in terms of the evolving oxygen stoichiometry. For Ca doping, the interstitial oxygen excess around the La/Ca atoms in underdoped samples is rapidly lost upon increasing the Ca content. The creation of oxygen vacancies leads to the stabilization of a mixed-valence Co2.5+ independently of the Ca content. In contrast, Sr substitution leads to almost stoichiometric samples and a lower oxygen vacancy concentration, which allows higher mixed-valence states for Co up to Co2.9+. The Co mixed-valence state along the two series is fluctuating between two valence states, Co2.4+ as in La2CoO4.2 and Co2.9+ as in LaSrCoO3.91, that become periodically ordered for the charge-ordered phases around the half-doping. The X-ray emission derived spin states agree well with the Co fluctuating mixed-valence state derived from X-ray absorption spectroscopy on consideration of a distribution of high-spin Co2+ and low-spin Co3+. Furthermore, there is no quenching of the orbital contribution for the high-spin Co2+, as concluded from a comparison with macroscopic magnetization measurements. Doping holes are mainly located in the ab plane and have a strong oxygen 2p character. The major lattice distortions, which are different for Sr and Ca doping, occur along the c axis, where changes in the oxygen stoichiometry take place. Moreover, charge-order transitions are clearly shown from the anomalous increase of the c lattice parameter with an increase in the temperature above 500 K but there is no signature for a temperature-dependent spin-state transition.

15.
Inorg Chem ; 59(14): 9798-9806, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32614169

RESUMO

The structural and physical properties of the ß polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of ß-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a' magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.

16.
Inorg Chem ; 59(14): 10048-10058, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32589405

RESUMO

Metal oxyfluorides are currently attracting much attention for next-generation rechargeable batteries because of their high theoretical capacity and resulting high energy density. Rhombohedral VO2F is promising because it allows two-electron transfer during electrochemical lithium cycling, with a theoretical capacity of 526 mAh g-1. However, the chemical changes it undergoes during operation are not clearly understood. In this work, a combination of synchrotron X-ray and neutron diffraction was employed to accurately describe the crystal structure of both pristine and lithiated VO2F, using samples with high crystallinity to overcome challenges in previous studies. The mechanism and reversibility of the lithium insertion was monitored in real time by high angular synchrotron diffraction measurements, performed in operando on a lithium battery in the high-voltage range: 3.9-2.3 V vs Li+/Li. Insertion of up to one lithium ion proceeds through a solid-solution reaction, while Rietveld refinements of neutron powder diffraction data revealed that the lithiated states adopt the noncentrosymmetric R3c framework, uncovering an octahedral Li-(O/F)6 coordination with reasonable Li-O/F bond lengths. This work further evaluates the redox changes of VO2F upon Li intercalation. By a comparison of changes in electronic states of all the elements in the compound, it clarifies the critical role of both anions, O and F, in the charge compensation through their covalent interactions with the 3d states of V. The clear evidence of participation of F challenges existing assumptions that its high electronegativity renders this anion largely a spectator in the redox reaction.

17.
Inorg Chem ; 59(11): 7553-7560, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432871

RESUMO

Several different mechanisms of magnetoresistance (MR) have been observed in 1111 LnMnAsO1-xFx oxypnictides (Ln = lanthanide) as a result of magnetic coupling between the Mn and Ln. Such phases also exhibit interesting magnetic phase transitions upon cooling. Sr2Mn2CrAs2O2 has been synthesized to investigate if it is possible to observe MR and/or magnetic phase transitions as a result of magnetic coupling between the Mn and Cr. Sr2Mn2CrAs2O2 crystallizes in the tetragonal space group I4/mmm containing alternating MO22- and M'2As22- layers, and neutron diffraction results demonstrate that the actual stoichiometry is Sr2Mn2.23Cr0.77As2O2. Cation order is present between Mn and Cr, with Cr predominantly occupying the square planar MO22- site. Below 410 K, the magnetic moments of the Mn/Cr ions in the M'2As22- sublattice exhibit G-type antiferromagnetic order. The Mn/Cr moments within the MO22- layer order below 167 K with a K2NiF4-type antiferromagnetic structure that simultaneously induces a spin flip of the magnetic moments in the M'2As22- layers from a G-type to a C-type antiferromagnetic arrangement. The results demonstrate that the superexchange interactions are finely balanced in Sr2Mn2.23Cr0.77As2O2. Sr2Mn2.23Cr0.77As2O2 is semiconducting, and there is no evidence of MR.

18.
Inorg Chem ; 59(9): 6528-6540, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286842

RESUMO

Solid electrolytes have regained tremendous interest recently in light of the exposed vulnerability of current rechargeable battery technologies. While designing solid electrolytes, most efforts concentrated on creating structural disorder (vacancies, interstitials, etc.) in a cationic Li/Na sublattice to increase ionic conductivity. In phosphates, the ionic conductivity can also be increased by rotational disorder in the anionic sublattice, via a paddle-wheel mechanism. Herein, we report on Na4Zn(PO4)2 which is designed from Na3PO4, replacing Na+ with Zn2+ and introducing a vacancy for charge balance. We show that Na4Zn(PO4)2 undergoes a series of structural transitions under temperature, which are associated with an increase in ionic conductivity by several orders of magnitude. Our detailed crystallographic study, combining electron, neutron, and X-ray powder diffraction, reveals that the room-temperature form, α-Na4Zn(PO4)2, contains orientationally ordered PO4 groups, which undergo partial and full rotational disorder in the high-temperature ß- and γ-polymorphs, respectively. We furthermore showed that the highly conducting γ-polymorph could be stabilized at room temperature by ball-milling, whereas the ß-polymorph can be stabilized by partial substitution of Zn2+ with Ga3+ and Al3+. These findings emphasize the role of rotational disorder as an extra parameter to design new solid electrolytes.

19.
Inorg Chem ; 59(8): 5339-5349, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32250599

RESUMO

The OP4-(Li/Na)xCoO2 phase is an unusual lamellar oxide with a 1:1 alternation between Li and Na interslab spaces. In order to probe the local structure, electronic structure, and dynamics, 7Li and 23Na magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was performed in complementarity to X-ray diffraction and electronic and magnetic properties measurements. 7Li MAS NMR showed that NMR shifts result from two contributions: the Fermi contact and the Knight shifts due to the presence of both localized and delocalized electrons, which is really unusual. 7Li MAS NMR clearly shows several Li environments, indicating that, moreover, Co ions with different local electronic structures are formed, probably due to the arrangement of the Na+ ions in the next cationic layer. 23Na MAS NMR showed that some Na+ ions are located in the Li layer, which was not previously considered in the structural model. The Rietveld refinement of the synchrotron XRD led to the OP4-[Li0.42Na0.05]Na0.32CoO2 formula for the material. In addition, 7Li and 23Na MAS NMR spectroscopies provide information about the cationic mobility in the material: Whereas no exchange is observed for 7Li up to 450 K, the 23Na spectrum already reveals a single average signal at room temperature due to a much larger ionic mobility.

20.
Inorg Chem ; 59(5): 2890-2899, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069031

RESUMO

We prepared Al-doped LCO (LCA) powders with low Al content (4%) with a controlled Li/(Co + Al) stoichiometry by a solid-state reaction using Li2CO3 and two types of Co/Al precursors: simply mixed (Co3O4 and Al2O3) or heat-treated (Co3O4 and Al2O3). These samples were thereby used to propose a reliable protocol with the aim to discuss the homogeneity of the Al doping for LiCo1-yAlyO2 (LCA) prepared with low Al content by evidencing the distribution of Al within the powders, which clearly affects the electrochemical profiles of associated LCA//Li cells. For all samples we initially also characterized the Li/(Co + Al) stoichiometry by 7Li MAS NMR, to discard the possible effect of excess Li in the samples. Synchrotron XRD combined with 27Al and 59Co MAS NMR then provided a deep understanding of the doping homogeneity at the powder or particle scale. We showed that doping the Co3O4 spinel precursor by reacting it with Al2O3 may be avoided, as it most likely leads to an inhomogeneous mixture of Co3O4 and Co3-zAlzO4 as precursor, eventually reflecting in the final LiCo0.96Al0.04O2 powder, which shows a nonhomogeneous Al distribution. We believe that such a detailed characterization should be the first step toward a deeper understanding of the real beneficial effect(s) of Al doping on the high voltage performance of LCO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...