Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231737

RESUMO

OBJECTIVE: Existing literature indicates that females generally demonstrate higher fatigue resistance than males during isometric contractions. However, when it comes to single-limb dynamic exercises, the intricate interplay between performance fatigability (PF), cardiovascular responses, and muscle metabolism in relation to sex differences remains underexplored. PURPOSE: This study investigates how sex affects the relationship between muscle oxidative characteristics and the development of PF during dynamic single-leg exercise. METHODS: Twenty-four young healthy participants (12 males vs. 12 females) performed a constant-load single-leg knee extension task (85% peak power output; 60 rpm) to exhaustion (TTE). Neuromuscular assessments via transcranial magnetic and peripheral stimulations were conducted pre- and post-exercise to evaluate central and peripheral factors of PF. Vastus lateralis muscle biopsies were obtained for mitochondrial respiration and immunohistochemistry analyses. RESULTS: Participants performed similar total work (28 ± 7 vs. 27 ± 14 kJ, p = 0.81) and TTE (371 ± 139 vs. 377 ± 158 sec, p = 0.98); after the TTE, females' maximal isometric voluntary contraction (MVIC: -36 ± 13 vs. -24 ± 9 %, p = 0.006) and resting twitch (RT: (-65 ± 9 vs. -40 ± 24 %, p = 0.004) force declined less. No differences were observed in supraspinal neuromuscular factors (p > 0.05). During exercise, the cardiovascular responses differed between sexes. Although fiber type composition was similar (type I: 47 ± 13 vs. 56 ± 14 %, p = 0.11), males had lower mitochondrial net oxidative capacity (61 ± 30 vs. 89 ± 37, p = 0.049) and higher Complex II contribution to maximal respiration (CII; 59 ± 8 vs. 48 ± 6%, p < 0.001), which correlated with the decline in MVIC (r = -0.74, p < 0.001) and RT (r = -0.60, p = 0.002). CONCLUSIONS: Females display greater resistance to PF during dynamic contractions, likely due to their superior mitochondrial efficiency and lower dependence on mitochondrial CII activity.

2.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R389-R399, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102463

RESUMO

Increasing evidence suggests that activation of muscle nerve afferents may inhibit central motor drive, affecting contractile performance of remote exercising muscles. Although these effects are well documented for metaboreceptors, very little is known about the activation of mechano- and mechanonociceptive afferents on performance fatigability. Therefore, the purpose of the present study was to examine the influence of mechanoreceptors and nociceptors on performance fatigability. Eight healthy young males undertook four randomized experimental sessions on separate occasions in which the experimental knee extensors were the following: 1) resting (CTRL), 2) passively stretched (ST), 3) resting with delayed onset muscle soreness (DOMS), or 4) passively stretched with DOMS (DOMS+ST), whereas the contralateral leg performed an isometric time to task failure (TTF). Changes in maximal voluntary contraction (ΔMVC), potentiated twitch force (ΔQtw,pot), and voluntary muscle activation (ΔVA) were also assessed. TTF was reduced in DOMS+ST (-43%) and ST (-29%) compared with CTRL. DOMS+ST also showed a greater reduction of VA (-25% vs. -8%, respectively) and MVC compared with CTRL (-28% vs. -45%, respectively). Rate of perceived exertion (RPE) was significantly increased at the initial stages (20-40-60%) of the TTF in DOMS+ST compared with all conditions. These findings indicate that activation of mechanosensitive and mechanonociceptive afferents of a muscle with DOMS reduces TTF of the contralateral homologous exercising limb, in part, by reducing VA, thereby accelerating mechanisms of central fatigue.NEW & NOTEWORTHY We found that activation of mechanosensitive and nociceptive nerve afferents of a rested muscle group experiencing delayed onset muscle soreness was associated with reduced exercise performance of the homologous exercising muscles of the contralateral limb. This occurred with lower muscle voluntary activation of the exercising muscle at the point of task failure.


Assuntos
Mecanorreceptores , Fadiga Muscular , Músculo Esquelético , Mialgia , Nociceptores , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Mecanorreceptores/fisiologia , Mecanorreceptores/metabolismo , Adulto Jovem , Nociceptores/fisiologia , Mialgia/fisiopatologia , Adulto , Exercício Físico/fisiologia , Contração Muscular , Contração Isométrica
4.
Eur J Appl Physiol ; 123(8): 1751-1762, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37014452

RESUMO

Previous studies in animal models showed that exercise-induced metabolites accumulation may sensitize the mechanoreflex-induced response. The aim of this study was to assess whether the magnitude of the central hemodynamic and ventilatory adjustments evoked by isolated stimulation of the mechanoreceptors in humans are influenced by the prior accumulation of metabolic byproducts in the muscle. 10 males and 10 females performed two exercise bouts consisting of 5-min of intermittent isometric knee-extensions performed 10% above the previously determined critical force. Post-exercise, the subjects recovered for 5 min either with a suprasystolic circulatory occlusion applied to the exercised quadriceps (PECO) or under freely-perfused conditions (CON). Afterwards, 1-min of continuous passive leg movement was performed. Central hemodynamics, pulmonary data, and electromyography from exercising/passively-moved leg were recorded throughout the trial. Root mean square of successive differences (RMSSD, index of vagal tone) was also calculated. Δpeak responses of heart rate (ΔHR) and ventilation ([Formula: see text]) to passive leg movement were higher in PECO compared to CON (ΔHR: 6 ± 5 vs 2 ± 4 bpm, p = 0.01; 3.9 ± 3.4 vs 1.9 ± 1.7 L min-1, p = 0.02). Δpeak of mean arterial pressure (ΔMAP) was significantly different between conditions (5 ± 3 vs - 3 ± 3 mmHg, p < 0.01). Changes in RMSSD with passive leg movement were different between PECO and CON (p < 0.01), with a decrease only in the former (39 ± 18 to 32 ± 15 ms, p = 0.04). No difference was found in all the other measured variables between conditions (p > 0.05). These findings suggest that mechanoreflex-mediated increases in HR and [Formula: see text] are sensitized by metabolites accumulation. These responses were not influenced by biological sex.


Assuntos
Perna (Membro) , Músculo Esquelético , Masculino , Feminino , Humanos , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Hemodinâmica , Pressão Arterial , Mecanorreceptores/fisiologia , Frequência Cardíaca/fisiologia , Pressão Sanguínea/fisiologia , Reflexo/fisiologia
5.
J Appl Physiol (1985) ; 133(4): 945-958, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981730

RESUMO

This study aims to test the separated and combined effects of mechanoreflex activation and nociception through exercise-induced muscle damage (EIMD) on central and peripheral hemodynamics before and during single passive leg movement (sPLM). Eight healthy young males undertook four experimental sessions, in which a sPLM was performed on the dominant limb while in each specific session the contralateral was: 1) in a resting condition (CTRL), 2) stretched (ST), 3) resting after EIMD called delayed onset muscle soreness (DOMS) condition, or 4) stretched after EIMD (DOMS + ST). EIMD was used to induce DOMS in the following 24-48 h. Femoral blood flow (FBF) was assessed using Doppler ultrasound whereas central hemodynamics were assessed via finger photoplethysmography. Leg vascular conductance (LVC) was calculated as FBF/mean arterial pressure (MAP). RR-intervals were analyzed in the time (root mean squared of successive intervals; RMSSD) and frequency domain [low frequency (LF)/high frequency (HF)]. Blood samples were collected before each condition and gene expression analysis showed increased fold changes for P2X4 and IL1ß in DOMS and DOMS + ST compared with baseline. Resting FBF and LVC were decreased only in the DOMS + ST condition (-26 mL/min and -50 mL/mmHg/min respectively) with decreased RMSSD and increased LF/HF ratio. MAP, HR, CO, and SV were increased in ST and DOMS + ST compared with CTRL. Marked decreases of Δpeaks and AUC were observed for FBF (Δ: -146 mL/min and -265 mL respectively) and LVC (Δ: -8.66 mL/mmHg/min and ±1.7 mL/mmHg/min respectively) all P < 0.05. These results suggest that the combination of mechanoreflex and nociception resulted in decreased vagal tone and concomitant rise in sympathetic drive that led to increases in resting central hemodynamics with reduced limb blood flow before and during sPLM.NEW & NOTEWORTHY Exercise-induced muscle damage (EIMD) is a well-known model to study mechanical hyperalgesia and muscle peripheral nerve sensitizations. The combination of static stretching protocol on the damaged limb extensively increases resting central hemodynamics with reduction in resting limb blood flow and passive leg movement-induced hyperemia. The mechanism underlining these results may be linked to reduction of vagal tone with concomitant increase in sympathetic activity following mechano- and nociceptive activation.


Assuntos
Hiperemia , Nociceptividade , Cafeína , Hemodinâmica/fisiologia , Humanos , Masculino , Movimento/fisiologia , Músculo Esquelético/fisiologia , Músculos , Mialgia , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA