Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 182: 117065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428556

RESUMO

INTRODUCTION: Human mesenchymal stem cells (hMSCs) sense and respond to biomechanical and biophysical stimuli, yet the involved signaling pathways are not fully identified. The clinical application of biophysical stimulation including pulsed electromagnetic field (PEMF) has gained momentum in musculoskeletal disorders and bone tissue engineering. METHODOLOGY: We herein aim to explore the role of PEMF stimulation in bone regeneration by developing trabecular bone-like tissues, and then, culturing them under bone-like mechanical stimulation in an automated perfusion bioreactor combined with a custom-made PEMF stimulator. After selecting the optimal cell seeding and culture conditions for inspecting the effects of PEMF on hMSCs, transcriptomic studies were performed on cells cultured under direct perfusion with and without PEMF stimulation. RESULTS: We were able to identify a set of signaling pathways and upstream regulators associated with PEMF stimulation and to distinguish those linked to bone regeneration. Our findings suggest that PEMF induces the immune potential of hMSCs by activating and inhibiting various immune-related pathways, such as macrophage classical activation and MSP-RON signaling in macrophages, respectively, while promoting angiogenesis and osteogenesis, which mimics the dynamic interplay of biological processes during bone healing. CONCLUSIONS: Overall, the adopted bioreactor-based investigation platform can be used to investigate the impact of PEMF stimulation on bone regeneration.


Assuntos
Campos Eletromagnéticos , Transcriptoma , Humanos , Osso e Ossos , Regeneração Óssea , Reatores Biológicos
2.
Commun Biol ; 7(1): 292, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459109

RESUMO

Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.


Assuntos
Infecções por Citomegalovirus , Interleucina-6 , Humanos , Interleucina-6/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Citomegalovirus/genética , Células Epiteliais/patologia , DNA
3.
Cell Death Discov ; 9(1): 201, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385999

RESUMO

Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.

5.
Front Immunol ; 13: 915963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131938

RESUMO

Costimulatory molecules of the CD28 family play a crucial role in the activation of immune responses in T lymphocytes, complementing and modulating signals originating from the T-cell receptor (TCR) complex. Although distinct functional roles have been demonstrated for each family member, the specific signaling pathways differentiating ICOS- from CD28-mediated costimulation during early T-cell activation are poorly characterized. In the present study, we have performed RNA-Seq-based global transcriptome profiling of anti-CD3-treated naïve CD4+ T cells upon costimulation through either inducible costimulator (ICOS) or CD28, revealing a set of signaling pathways specifically associated with each signal. In particular, we show that CD3/ICOS costimulation plays a major role in pathways related to STAT3 function and osteoarthritis (OA), whereas the CD3/CD28 axis mainly regulates p38 MAPK signaling. Furthermore, we report the activation of distinct immunometabolic pathways, with CD3/ICOS costimulation preferentially targeting glycosaminoglycans (GAGs) and CD3/CD28 regulating mitochondrial respiratory chain and cholesterol biosynthesis. These data suggest that ICOS and CD28 costimulatory signals play distinct roles during the activation of naïve T cells by modulating distinct sets of immunological and immunometabolic genes.


Assuntos
Antígenos CD28 , Linfócitos T CD4-Positivos , Colesterol/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
PLoS One ; 17(8): e0273036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001607

RESUMO

The key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a significant change in the microbiota of AD mice compared to WT, with a longitudinal divergence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed a significant decrease of some amino acids, while data integration revealed a dysregulated production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data show a dysregulated gut microbiota associated to the onset and progression of AD, also indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early SCFA alterations, compatible with gut inflammation.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos
7.
Microorganisms ; 10(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35630335

RESUMO

Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were selected. To shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in the presence or not of salt was characterized. The number of proteins expressed by the endophytes was higher in the presence of salt. The modulated proteome consisted of 302 (100 up-regulated, 202 down-regulated) and 323 (206 up-regulated, 117 down-regulated) proteins in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 were thiol: disulfide interchange protein DsbA, required for the sulfur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in the two taxonomically related species.

8.
Cancers (Basel) ; 14(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159043

RESUMO

Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.

10.
Genes (Basel) ; 12(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681001

RESUMO

Known multiple sclerosis (MS) susceptibility variants can only explain half of the disease's estimated heritability, whereas low-frequency and rare variants may partly account for the missing heritability. Thus, here we sought to determine the occurrence of rare functional variants in a large Italian MS multiplex family with five affected members. For this purpose, we combined linkage analysis and next-generation sequencing (NGS)-based whole exome and whole genome sequencing (WES and WGS, respectively). The genetic burden attributable to known common MS variants was also assessed by weighted genetic risk score (wGRS). We found a significantly higher burden of common variants in the affected family members compared to that observed among sporadic MS patients and healthy controls (HCs). We also identified 34 genes containing at least one low-frequency functional variant shared among all affected family members, showing a significant enrichment in genes involved in specific biological processes-particularly mRNA transport-or neurodegenerative diseases. Altogether, our findings point to a possible pathogenic role of different low-frequency functional MS variants belonging to shared pathways. We propose that these rare variants, together with other known common MS variants, may account for the high number of affected family members within this MS multiplex family.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Genoma Humano/genética , Esclerose Múltipla/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Associação Genética , Ligação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/patologia , Linhagem , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
13.
Leukemia ; 34(12): 3256-3268, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32203146

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is suspected of being a risk factor for patients with cancer. This study aimed to assess the clinical consequences of CHIP in patients with lymphoma intended for high-dose chemotherapy and autologous stem-cell transplantation (ASCT) in a population-based setting. We identified 892 lymphoma patients who had undergone stem cell harvest at all transplant centers in Denmark. A total of 565 patients had an available harvest sample, which was analysed for CHIP by next-generation sequencing, and the median follow-up was 9.1 years. Of the patients who were intended for immediate ASCT, 25.5% (112/440) carried at least one CHIP mutation. In contrast to previous single-center studies CHIP was not associated with inferior overall survival (OS) in multivariate analyses. However, patients with mutations in genes of the DNA repair pathway (PPM1D, TP53, RAD21, BRCC3) had a significant inferior OS (HR after 1 year of follow-up 2.79, 95% confidence interval 1.71-4.56; p < 0.0001), which also was evident in multivariate analysis (p = 0.00067). These patients had also increased rates of therapy-related leukemia and admission to intensive care. Furthermore, in patients who did not undergo immediate ASCT, a significant inferior OS of individuals with DNA repair mutations was also identified (p = 0.003).


Assuntos
Hematopoiese Clonal/fisiologia , Linfoma/cirurgia , Linfoma/terapia , Adulto , Idoso , Antineoplásicos/uso terapêutico , Hematopoiese Clonal/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Linfoma/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Transplante Autólogo/métodos
14.
Blood ; 135(4): 261-268, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31697811

RESUMO

Clonal hematopoiesis (CH) of indeterminate potential (CHIP) is defined by mutations in myeloid cancer-associated genes with a variant allele frequency of at least 2%. Recent studies have suggested a possible genetic predisposition to CH. To further explore this phenomenon, we conducted a population-based study of 594 twins from 299 pairs aged 73 to 94 years, all with >20 years' follow-up. We sequenced DNA from peripheral blood with a customized 21-gene panel at a median coverage of 6179X. The casewise concordance rates for mutations were calculated to assess genetic predisposition. Mutations were identified in 214 (36%) of the twins. Whereas 20 twin pairs had mutations within the same genes, the exact same mutation was only observed in 2 twin pairs. No significant difference in casewise concordance between monozygotic and dizygotic twins was found for any specific gene, subgroup, or CHIP mutations overall, and no significant heritability could be detected. In pairs discordant for CHIP mutations, we tested if the affected twin died before the unaffected twin, as a direct measurement of the association of having CH when controlling for familial factors. A total of 127 twin pairs were discordant for carrying a mutation, and in 61 (48%) cases, the affected twin died first (P = .72). Overall, we did not find a genetic predisposition to CHIP mutations in this twin study. The previously described negative association of CHIP mutations on survival could not be confirmed in a direct comparison among twin pairs that were discordant for CHIP mutations.


Assuntos
Hematopoese , Leucemia Mieloide/genética , Gêmeos/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Doenças em Gêmeos/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/mortalidade , Humanos , Leucemia Mieloide/mortalidade , Masculino , Mutação , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
15.
Cancer Cell ; 34(6): 996-1011.e8, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537516

RESUMO

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Transcriptoma , Adulto , Biomarcadores Tumorais/metabolismo , Evolução Molecular , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Risco , Sequenciamento Completo do Genoma/métodos
16.
BMC Bioinformatics ; 19(Suppl 7): 184, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30066630

RESUMO

BACKGROUND: De novo assembly of RNA-seq data allows the study of transcriptome in absence of a reference genome either if data is obtained from a single organism or from a mixed sample as in metatranscriptomics studies. Given the high number of sequences obtained from NGS approaches, a critical step in any analysis workflow is the assembly of reads to reconstruct transcripts thus reducing the complexity of the analysis. Despite many available tools show a good sensitivity, there is a high percentage of false positives due to the high number of assemblies considered and it is likely that the high frequency of false positive is underestimated by currently used benchmarks. The reconstruction of not existing transcripts may false the biological interpretation of results as - for example - may overestimate the identification of "novel" transcripts. Moreover, benchmarks performed are usually based on RNA-seq data from annotated genomes and assembled transcripts are compared to annotations and genomes to identify putative good and wrong reconstructions, but these tests alone may lead to accept a particular type of false positive as true, as better described below. RESULTS: Here we present a novel methodology of de novo assembly, implemented in a software named STAble (Short-reads Transcriptome Assembler). The novel concept of this assembler is that the whole reads are used to determine possible alignments instead of using smaller k-mers, with the aim of reducing the number of chimeras produced. Furthermore, we applied a new set of benchmarks based on simulated data to better define the performance of assembly method and carefully identifying true reconstructions. STAble was also used to build a prototype workflow to analyse metatranscriptomics data in connection to a steady state metabolic modelling algorithm. This algorithm was used to produce high quality metabolic interpretations of small gene expression sets obtained from already published RNA-seq data that we assembled with STAble. CONCLUSIONS: The presented results, albeit preliminary, clearly suggest that with this approach is possible to identify informative reactions not directly revealed by raw transcriptomic data.


Assuntos
Redes e Vias Metabólicas/genética , Modelos Genéticos , Análise de Sequência de RNA/métodos , Software , Transcriptoma/genética , Fluxo de Trabalho , Algoritmos , Animais , Humanos , Metano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ruminantes
17.
NPJ Breast Cancer ; 4: 16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978035

RESUMO

The first genomic scar-based homologous recombination deficiency (HRD) measures were produced using SNP arrays. As array-based technology has been largely replaced by next generation sequencing approaches, it has become important to develop algorithms that derive the same type of genomic scar scores from next generation sequencing (whole exome "WXS", whole genome "WGS") data. In order to perform this analysis, we introduce here the scarHRD R package and show that using this method the SNP array-based and next generation sequencing-based derivation of HRD scores show good correlation (Pearson correlation between 0.73 and 0.87 depending on the actual HRD measure) and that the NGS-based HRD scores distinguish similarly well between BRCA mutant and BRCA wild-type cases in a cohort of triple-negative breast cancer patients of the TCGA data set.

18.
Nat Commun ; 8(1): 656, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939825

RESUMO

Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer patients, and identify a median of one mitochondrial single-nucleotide variant (mtSNV) per patient. Some of these mtSNVs occur in recurrent mutational hotspots and associate with aggressive disease. Younger patients have fewer mtSNVs than those who diagnosed at an older age. We demonstrate strong links between mitochondrial and nuclear mutational profiles, with co-occurrence between specific mutations. For example, certain control region mtSNVs co-occur with gain of the MYC oncogene, and these mutations are jointly associated with patient survival. These data demonstrate frequent mitochondrial mutation in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer.In prostate cancer, the role of mutations in the maternally-inherited mitochondrial genome are not well known. Here, the authors demonstrate frequent, age-dependent mitochondrial mutation in prostate cancer. Strong links between mitochondrial and nuclear mutational profiles are associated with clinical aggressivity.


Assuntos
Adenocarcinoma/genética , DNA Mitocondrial/genética , Mutação Puntual , Neoplasias da Próstata/genética , Adenocarcinoma/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Genes myc , Estudos de Associação Genética , Genoma Mitocondrial , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias da Próstata/patologia , Análise de Sobrevida
19.
Cancer Cell ; 31(1): 79-93, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073006

RESUMO

Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, we find frequent loss of heterozygosity and mutations in BCL9L in aneuploid tumors. BCL9L deficiency promoted tolerance of chromosome missegregation events, propagation of aneuploidy, and genetic heterogeneity in xenograft models likely through modulation of Wnt signaling. We find that BCL9L dysfunction contributes to aneuploidy tolerance in both TP53-WT and mutant cells by reducing basal caspase-2 levels and preventing cleavage of MDM2 and BID. Efforts to exploit aneuploidy tolerance mechanisms and the BCL9L/caspase-2/BID axis may limit cancer diversity and evolution.


Assuntos
Aneuploidia , Caspase 2/fisiologia , Neoplasias Colorretais/genética , Cisteína Endopeptidases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/fisiologia , Caspase 2/análise , Segregação de Cromossomos , Cisteína Endopeptidases/análise , Proteínas de Ligação a DNA/genética , Células HCT116 , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/fisiologia
20.
J Immunol Res ; 2016: 7675437, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28097158

RESUMO

Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases.


Assuntos
Imunidade Adaptativa/imunologia , Doenças Autoimunes/imunologia , Imunidade Inata/imunologia , Osteopontina/imunologia , Osteopontina/metabolismo , Animais , Humanos , Camundongos , Osteopontina/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...