Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 159: 214-224, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167686

RESUMO

Organic acids (OAs) are a class of feed additives that have prophylactic and inhibitory properties against pathogenic bacteria. In this study, we investigated growth performance, innate immune response, gut microbiota, and disease resistance against Francisella orientalis F1 in Nile tilapia (Oreochromis niloticus) fed different doses of Bacti-nil®Aqua, a blend of short- and medium-chain OAs. For 21 days, 680 juvenile tilapias were fed a control diet or diets supplemented with a 0.3% (D3) or 0.5% (D5) OA blend. The feed conversion rate of fish fed the 0.5% enriched diet was considerably lower (p < 0.05) than that of the fish fed the basal diet. Lysozyme and serum bactericidal activities were significantly elevated following OA administration. After infection, no differences in the diversity and composition of gut microbiota were observed between the groups. After the bacterial challenge, the mortality was significantly lower in group D5 (p < 0.01). The diet supplemented with Bacti-nil®Aqua (Adisseo) improved the immune response and resistance of tilapia juveniles against F. orientalis infection. Thus, this OA blend could serve as a feed additive with good activity against F. orientalis.


Assuntos
Ciclídeos , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções Estreptocócicas , Animais , Ração Animal/análise , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Suplementos Nutricionais/análise , Imunidade Inata , Dieta/veterinária , Resistência à Doença
2.
Front Genet ; 11: 1024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005185

RESUMO

Streptococcus agalactiae is an invasive multi-host pathogen that causes invasive diseases mainly in newborns, elderly, and individuals with underlying health complications. In fish, S. agalactiae causes streptococcosis, which is characterized by septicemia and neurological signs, and leads to great economic losses to the fish farming industry worldwide. These bacteria can be classified into different serotypes based on capsular antigens, and into different sequence types (ST) based on multilocus sequence typing (MLST). In 2015, serotype III ST283 was identified to be associated with a foodborne invasive disease in non-pregnant immunocompetent humans in Singapore, and the infection was related to raw fish consumption. In addition, a serotype III strain isolated from tilapia in Brazil has been reported to be resistant to five antibiotic classes. This specific serotype can serve as a reservoir of resistance genes and pose a serious threat to public health. Thus, new approaches for the control and treatment of S. agalactiae infections are needed. In the present study, 24 S. agalactiae serotype III complete genomes, isolated from human and fish hosts, were compared. The core genome was identified, and, using bioinformatics tools and subtractive criteria, five proteins were identified as potential drug targets. Furthermore, 5,008 drug-like natural compounds were virtually screened against the identified targets. The ligands with the best binding properties are suggested for further in vitro and in vivo analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA