Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 198: 114984, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245485

RESUMO

Uremic toxins, such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS), contribute to endothelial dysfunction in chronic kidney disease (CKD). This process is mediated by several cellular pathways, but it is unclear whether cAMP-responsive element-binding protein (CREB) and activating transcription factor 1 (ATF1) participate in endothelial dysfunction in uremic conditions despite playing roles in inflammatory modulation. This study aimed to evaluate the expression, activation, and transcriptional activity of CREB/ATF1 in endothelial cells exposed to PCS, IS, and uremic serum (US). In vitro, ATF1 protein levels were increased by PCS and IS, whereas CREB levels were enhanced only by IS. Activation through CREB-Ser133 and ATF1-Ser63 phosphorylation was induced by PCS, IS, and US. We evaluated the CREB/ATF1 transcriptional activity by analyzing the expression of their target genes, including ICAM1, PTGS2, NOX1, and SLC22A6, which are related to endothelial dysfunction through their roles in vascular inflammation, oxidative stress, and cellular uptake of PCS and IS. The expression of ICAM1, PTGS2 and NOX1 genes was increased by PCS, IS, and US, whereas that of SLC22A6 was induced only by IS. KG-501, a CREB inhibitor, restored the inductive effects of PCS on ICAM1, PTGS2, and NOX1 expression; IS on ICAM1, PTGS2 and SLC22A6 expression; and US on NOX1 expression. The presence of CREB and ATF1 was observed in healthy arteries and in arteries of patients with CKD, which were structurally damaged. These findings suggest that CREB/ATF1 is activated by uremic toxins and may play a relevant role in endothelial dysfunction in CKD.


Assuntos
Insuficiência Renal Crônica , Doenças Vasculares , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Indicã/metabolismo , Indicã/toxicidade , Masculino , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Toxinas Urêmicas , Doenças Vasculares/metabolismo
2.
Toxicol Lett ; 347: 12-22, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945863

RESUMO

p-Cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) are uremic toxins found in chronic kidney disease (CKD) that are closely related to endothelial extracellular vesicles (EVs) formation. The present study aimed to understand the role of EVs and their role in cell adhesion and migration, inflammation, and oxidative stress. Human endothelial cells were treated with PCS, IS, and Pi in pre-established uremic and kinetic recommendations. EVs were characterized using scanning electron microscopy, flow cytometry, and NanoSight assays. The concentrations of EVs were established using Alamar Blue and MTT assays. Cell adhesion to extracellular matrix proteins was analyzed using an adhesion assay. Inflammation and oxidative stress were assessed by vascular cell adhesion molecule-1 expression/monocyte migration and reactive oxygen species production, respectively. The capacity of EVs to stimulate endothelial cell migration was evaluated using a wound-healing assay. Our data showed that endothelial cells stimulated with uremic toxins can induce the formation of EVs of different sizes, quantities, and concentrations, depending on the uremic toxin used. Cell adhesion was significantly (P < 0.01) stimulated in cells exposed to PCS-induced extracellular vesicles (PCSEVs) and inorganic phosphate-induced extracellular vesicles (PiEVs). Cell migration was significantly (P < 0.05) stimulated by PCSEVs. VCAM-1 expression was evident in cells treated with PCSEVs and IS-induced extracellular vesicles (ISEVs). EVs are not able to stimulate monocyte migration or oxidative stress. In conclusion, EVs may be a biomarker of endothelial injury and the inflammatory process, playing an important role in cell-to-cell communication and pathophysiological processes, although more studies are needed to better understand the mechanisms of EVs in uremia.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cresóis/toxicidade , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Indicã/toxicidade , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/toxicidade , Ésteres do Ácido Sulfúrico/toxicidade , Uremia/patologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Transdução de Sinais , Uremia/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Toxins (Basel) ; 11(5)2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086003

RESUMO

Endothelial microparticles (EMPs) are vesicles derived from cell membranes, which contain outsourced phosphatidylserine and express adhesion molecules, such as cadherin, intercellular cell adhesion molecule-1 (ICAM-1), E-selectin, and integrins. EMPs are expressed under physiological conditions and continue circulating in the plasma. However, in pathologic conditions their levels increase, and they assume a pro-inflammatory and pro-coagulant role via interactions with monocytes; these effects are related to the development of atherosclerosis. Chronic kidney dysfunction (CKD) characterizes this dysfunctional scenario through the accumulation of uremic solutes in the circulating plasma, whose toxicity is related to the development of cardiovascular diseases. Therefore, this review aims to discuss the formation of EMPs and their biological effects in the uremic environment. Data from previous research demonstrate that uremic toxins are closely associated with the activation of inflammatory biomarkers, cardiovascular dysfunction processes, and the release of EMPs. The impact of a decrease in circulating EMPs in clinical studies has not yet been evaluated. Thus, whether MPs are biochemical markers and/or therapeutic targets has yet to be established.


Assuntos
Micropartículas Derivadas de Células , Células Endoteliais/citologia , Uremia , Animais , Biomarcadores , Doenças Cardiovasculares , Humanos , Transdução de Sinais
4.
Clin Kidney J ; 11(1): 89-98, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29423208

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) have been related to the pathogenesis of cardiovascular diseases (CVD), chronic kidney disease (CKD) and diabetes mellitus. We sought to investigate the binding capacity of sevelamer to both AGEs and uremic serum in vitro and then test this pharmaceutical effect as a potential vascular anti-inflammatory strategy. METHODS: AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. Human endothelial cells were incubated in culture media containing AGEs and uremic serum with or without sevelamer. Receptor for advanced glycation end product (RAGE) expression was evaluated through immunocytochemistry and western blot to explore the interactions between AGEs and the endothelium. Inflammatory and endothelial dysfunction biomarkers, such as interleukin 6 (IL-6) and IL-8, monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and serum amyloid A (SAA) were also measured in cell supernatant. The chemotactic property of the supernatant was evaluated. RESULTS: AGEs significantly induced the expression of RAGE, inflammatory and endothelial activation biomarkers [IL-6, (P < 0.005); IL-8, MCP-1, PAI-1 and SAA (P < 0.001)] and monocyte chemotaxis as compared with controls. In addition, AGEs increased the levels of inflammatory biomarkers, which were observed after 6 h of endothelial cell incubation with uremic serum [IL-6 (P < 0.001) IL-8, MCP-1 and PAI-1 (P < 0.05)]. On the other hand, after 6 h of endothelial cell treatment with sevelamer, RAGE expression (P < 0.05) and levels of inflammatory biomarkers [IL-6 and IL-8 (P < 0.001), MCP-1 (P < 0.01), PAI-1 and SAA (P < 0.005)] significantly decreased compared with the AGEs/uremic serum treatment alone. CONCLUSIONS: Sevelamer decreased both endothelial expression of RAGE and endothelial dysfunction biomarkers, induced by AGEs, and uremic serum. Further studies are necessary for a better understanding of the potential protective role of sevelamer on uremic serum and AGEs-mediated endothelial dysfunction.

5.
J Vasc Res ; 54(3): 170-179, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472795

RESUMO

Organic anion transporters (OATs) are involved in the uptake of uremic toxins such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS), which play a role in endothelial dysfunction in patients with chronic kidney diseases (CKD). In this study, we investigated the role of OAT1 and OAT3 in the uptake of PCS and IS into human endothelial cells. PCS was synthesized via p-cresol sulfation and characterized using analytical methods. The cells were treated with PCS and IS in the absence and presence of probenecid (Pb), an OAT inhibitor. Cell viability was assessed using the MTT assay. The absorbed toxins were analyzed using chromatography, OAT expression using immunocytochemistry and western blot, and monocyte chemoattractant protein-1 (MCP-1) expression using enzyme-linked immunosorbent assay. Cell viability decreased after toxin treatment in a dose-dependent manner. PCS and IS showed significant internalization after 60 min treatment, while no internalization was observed in the presence of Pb, suggesting that OATs are involved in the transport of both toxins. Immunocytochemistry and western blot demonstrated OAT1 and OAT3 expression in endothelial cells. MCP-1 expression increased after toxins treatment but decreased after Pb treatment. PCS and IS uptake were mediated by OATs, and OAT blockage could serve as a therapeutic strategy to inhibit MCP-1 expression.


Assuntos
Quimiocina CCL2/metabolismo , Células Endoteliais/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Uremia/metabolismo , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cresóis/metabolismo , Cresóis/toxicidade , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Indicã/metabolismo , Indicã/toxicidade , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Probenecid/farmacologia , Ésteres do Ácido Sulfúrico/metabolismo , Ésteres do Ácido Sulfúrico/toxicidade , Fatores de Tempo , Regulação para Cima , Uremia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...