Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(2): 1018-1027, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29320856

RESUMO

Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1', D2 and D2', in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag1 and Ag2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.

2.
Nano Lett ; 16(12): 7761-7767, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960475

RESUMO

Owing to its crystallographic structure, black phosphorus is one of the few 2D materials expressing strongly anisotropic optical, transport, and mechanical properties. We report on the anisotropy of electron-phonon interactions through a polarization-resolved Raman study of the four vibrational modes of atomically thin black phosphorus (2D phosphane): the three bulk-like modes Ag1, B2g, and Ag2 and the Davydov-induced mode labeled Ag(B2u). The complex Raman tensor elements reveal that the relative variation in permittivity of all Ag modes is irrespective of the atomic motion involved lowest along the zigzag direction, the basal anisotropy of these variations is most pronounced for Ag2 and Ag(B2u), and interlayer interactions in multilayer samples lead to reduced anisotropy. The bulk-forbidden Ag(B2u) mode appears for n ≥ 2 and quickly subsides in thicker layers. It is assigned to a Davydov-induced IR to Raman conversion of the bulk IR mode B2u and exhibits characteristics similar to Ag2. Although this mode is expected to be weak, an electronic resonance significantly enhances its Raman efficiency such that it becomes a dominant mode in the spectrum of bilayer 2D phosphane.

3.
ACS Nano ; 10(11): 10220-10226, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27779852

RESUMO

Liquid-phase encapsulation of α-sexithiophene (6T) molecules inside individualized single-walled carbon nanotubes (SWCNTs) is investigated using Raman imaging and spectroscopy. By taking advantage of the strong Raman response of this system, we probe the encapsulation isotherms at 30 and 115 °C using a statistical ensemble of SWCNTs deposited on a oxidized silicon substrate. Two distinct and sequential stages of encapsulation are observed: Stage 1 is a one-dimensional (1D) aggregation of 6T aligned head-to-tail inside the nanotube, and stage 2 proceeds with the assembly of a second row, giving pairs of aligned 6Ts stacked together side-by-side. The experimental data are fitted using both Langmuir (type VI) and Ising models, in which the single-aggregate (stage 1) forms spontaneously, whereas the pair-aggregate (stage 2) is endothermic in toluene with formation enthalpy of ΔHpair = (260 ± 20) meV. Tunable Raman spectroscopy for each stage reveals a bathochromic shift of the molecular resonance of the pair-aggregate, which is consistent with strong intermolecular coupling and suggestive of J-type aggregation. This quantitative Raman approach is sensitive to roughly 10 molecules per nanotube and provides direct evidence of molecular entry from the nanotube ends. These insights into the encapsulation process guide the preparation of well-defined 1D molecular crystals having tailored optical properties.

4.
Nat Mater ; 14(8): 826-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26006004

RESUMO

Thin layers of black phosphorus have recently raised interest owing to their two-dimensional (2D) semiconducting properties, such as tunable direct bandgap and high carrier mobilities. This lamellar crystal of phosphorus atoms can be exfoliated down to monolayer 2D-phosphane (also called phosphorene) using procedures similar to those used for graphene. Probing the properties has, however, been challenged by a fast degradation of the thinnest layers on exposure to ambient conditions. Herein, we investigate this chemistry using in situ Raman and transmission electron spectroscopies. The results highlight a thickness-dependent photoassisted oxidation reaction with oxygen dissolved in adsorbed water. The oxidation kinetics is consistent with a phenomenological model involving electron transfer and quantum confinement as key parameters. A procedure carried out in a glove box is used to prepare mono-, bi- and multilayer 2D-phosphane in their pristine states for further studies on the effect of layer thickness on the Raman modes. Controlled experiments in ambient conditions are shown to lower the A(g)(1)/A(g)(2) intensity ratio for ultrathin layers, a signature of oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...