Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(28): 5873-5879, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417819

RESUMO

Nucleoside analogs show useful bioactive properties. A versatile solid-phase synthesis that readily enables the diversification of thymine-containing nucleoside analogs is presented. The utility of the approach is demonstrated with the preparation of a library of compounds for analysis with SNM1A, a DNA damage repair enzyme that contributes to cytotoxicity. This exploration provided the most promising nucleoside-derived inhibitor of SNM1A to date with an IC50 of 12.3 µM.


Assuntos
Nucleosídeos , Timina , Nucleosídeos/farmacologia , Timina/farmacologia , Técnicas de Síntese em Fase Sólida , Exodesoxirribonucleases/metabolismo , Reparo do DNA
2.
Chembiochem ; 24(13): e202200756, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917742

RESUMO

We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.


Assuntos
Proteínas de Ciclo Celular , Exodesoxirribonucleases , Exodesoxirribonucleases/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Oligonucleotídeos/química
3.
ChemMedChem ; 17(5): e202100603, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34905656

RESUMO

Certain cancers exhibit upregulation of DNA interstrand crosslink repair pathways, which contributes to resistance to crosslinking chemotherapy drugs and poor prognoses. Inhibition of enzymes implicated in interstrand crosslink repair is therefore a promising strategy for improving the efficacy of cancer treatment. One such target enzyme is SNM1A, a zinc co-ordinating 5'-3' exonuclease. Previous studies have demonstrated the feasibility of inhibiting SNM1A using modified nucleosides appended with zinc-binding groups. In this work, we sought to develop more effective SNM1A inhibitors by exploiting interactions with the phosphate-binding pocket adjacent to the enzyme's active site, in addition to the catalytic zinc ions. A series of nucleoside derivatives bearing phosphate moieties at the 5'-position, as well as zinc-binding groups at the 3'-position, were prepared and tested in gel-electrophoresis and real-time fluorescence assays. As well as investigating novel zinc-binding groups, we found that incorporation of a 5'-phosphate dramatically increased the potency of the inhibitors.


Assuntos
Exodesoxirribonucleases , Nucleosídeos , Reparo do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Nucleosídeos/farmacologia , Fosfatos , Fosforilação , Zinco/farmacologia
4.
ACS Chem Biol ; 16(12): 2719-2730, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34779621

RESUMO

Over the past two decades, activity-based probes have enabled a range of discoveries, including the characterization of new enzymes and drug targets. However, their suitability in some labeling experiments can be limited by nonspecific reactivity, poor membrane permeability, or high toxicity. One method for overcoming these issues is through the development of "inducible" activity-based probes. These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling can occur. In this Review, we discuss a variety of approaches to inducible activity-based probe design, different means of probe activation, and the advancements that have resulted from these applications. Additionally, we highlight recent developments which may provide opportunities for future inducible activity-based probe innovations.


Assuntos
Sondas Moleculares/química , Proteínas/química , Corantes Fluorescentes/química , Processos Fotoquímicos , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...