Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 5(8): 2087-2100, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33877295

RESUMO

Leukemia stem cells (LSCs) and therapy-resistant acute myeloid leukemia (AML) blasts contribute to the reinitiation of leukemia after remission, necessitating therapeutic interventions that target these populations. Autophagy is a prosurvival process that allows for cells to adapt to a variety of stressors. Blocking autophagy pharmacologically by using mechanistically distinct inhibitors induced apoptosis and prevented colony formation in primary human AML cells. The most effective inhibitor, bafilomycin A1 (Baf A1), also prevented the in vivo maintenance of AML LSCs in NSG mice. To understand why Baf A1 exerted the most dramatic effects on LSC survival, we evaluated mitochondrial function. Baf A1 reduced mitochondrial respiration and stabilized PTEN-induced kinase-1 (PINK-1), which initiates autophagy of mitochondria (mitophagy). Interestingly, with the autophagy inhibitor chloroquine, levels of enhanced cell death and reduced mitochondrial respiration phenocopied the effects of Baf A1 only when cultured in hypoxic conditions that mimic the marrow microenvironment (1% O2). This indicates that increased efficacy of autophagy inhibitors in inducing AML cell death can be achieved by concurrently inducing mitochondrial damage and mitophagy (pharmacologically or by hypoxic induction) and blocking mitochondrial degradation. In addition, prolonged exposure of AML cells to hypoxia induced autophagic flux and reduced chemosensitivity to cytarabine (Ara-C), which was reversed by autophagy inhibition. The combination of Ara-C with Baf A1 also decreased tumor burden in vivo. These findings demonstrate that autophagy is critical for mitochondrial homeostasis and survival of AML cells in hypoxia and support the development of autophagy inhibitors as novel therapeutic agents for AML.


Assuntos
Leucemia Mieloide Aguda , Animais , Autofagia , Homeostase , Humanos , Hipóxia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Mitocôndrias , Células-Tronco , Microambiente Tumoral
2.
Mol Cancer Res ; 18(8): 1153-1165, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32332049

RESUMO

The NSD2 p.E1099K (EK) mutation is observed in 10% of acute lymphoblastic leukemia (ALL) samples with enrichment at relapse indicating a role in clonal evolution and drug resistance. To discover mechanisms that mediate clonal expansion, we engineered B-precursor ALL (B-ALL) cell lines (Reh, 697) to overexpress wildtype (WT) and EK NSD2, but observed no differences in proliferation, clonal growth, or chemosensitivity. To address whether NSD2 EK acts collaboratively with other pathways, we used short hairpin RNAs to knockdown expression of NSD2 in B-ALL cell lines heterozygous for NSD2 EK (RS4;11, RCH-ACV, SEM). Knockdown resulted in decreased proliferation in all lines, decreased clonal growth in RCH-ACV, and increased sensitivity to cytotoxic chemotherapeutic agents, although the pattern of drug sensitivity varied among cell lines implying that the oncogenic properties of NSD2 mutations are likely cell context specific and rely on cooperative pathways. Knockdown of both Type II and REIIBP EK isoforms had a greater impact than knockdown of Type II alone, suggesting that both SET containing EK isoforms contribute to phenotypic changes driving relapse. Furthermore, in vivo models using both cell lines and patient samples revealed dramatically enhanced proliferation of NSD2 EK compared with WT and reduced sensitivity to 6-mercaptopurine in the relapse sample relative to diagnosis. Finally, EK-mediated changes in chromatin state and transcriptional output differed dramatically among cell lines further supporting a cell context-specific role of NSD2 EK. These results demonstrate a unique role of NSD2 EK in mediating clonal fitness through pleiotropic mechanisms dependent on the genetic and epigenetic landscape. IMPLICATIONS: NSD2 EK mutation leads to drug resistance and a clonal advantage in childhood B-ALL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica/métodos , Histona-Lisina N-Metiltransferase/genética , Mutação , Recidiva Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Repressoras/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Criança , Progressão da Doença , Epigênese Genética , Células HEK293 , Humanos , Camundongos , Análise de Sequência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 9(5): e96835, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817148

RESUMO

Polyglutamine expansions in certain proteins are the genetic determinants for nine distinct progressive neurodegenerative disorders and resultant age-related dementia. In these cases, neurodegeneration is due to the aggregation propensity and resultant toxic properties of the polyglutamine-containing proteins. We are interested in elucidating the underlying mechanisms of toxicity of the protein ataxin-3, in which a polyglutamine expansion is the genetic determinant for Machado-Joseph Disease (MJD), also referred to as spinocerebellar ataxia 3 (SCA3). To this end, we have developed a novel model for ataxin-3 protein aggregation, by expressing a disease-related polyglutamine-containing fragment of ataxin-3 in the genetically tractable body wall muscle cells of the model system C. elegans. Here, we demonstrate that this ataxin-3 fragment aggregates in a polyQ length-dependent manner in C. elegans muscle cells and that this aggregation is associated with cellular dysfunction. However, surprisingly, this aggregation and resultant toxicity was not influenced by aging. This is in contrast to polyglutamine peptides alone whose aggregation/toxicity is highly dependent on age. Thus, the data presented here not only describe a new polyglutamine model, but also suggest that protein context likely influences the cellular interactions of the polyglutamine-containing protein and thereby modulates its toxic properties.


Assuntos
Envelhecimento/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Peptídeos/metabolismo , Agregação Patológica de Proteínas , Proteínas Repressoras/química , Envelhecimento/fisiologia , Sequência de Aminoácidos , Animais , Ataxina-3 , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico , Humanos , Dados de Sequência Molecular , Músculos/citologia , Músculos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...