Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998364

RESUMO

High-performance hydrogen sulfide (H2S) sensors are mandatory for many industrial applications. However, the development of H2S sensors still remains a challenge for researchers. In this work, we report the study of a TiO2-based conductometric sensor for H2S monitoring at low concentrations. TiO2 samples were first synthesized using the sol-gel route, annealed at different temperatures (400 and 600 °C), and thoroughly characterized to evaluate their morphological and microstructural properties. Scanning electronic microscopy, Raman scattering, X-ray diffraction, and FTIR spectroscopy have demonstrated the formation of clusters of pure anatase in the TiO2 phase. Increasing the calcination temperature to 600 °C enhanced TiO2 crystallinity and particle size (from 11 nm to 51 nm), accompanied by the transition to the rutile phase and a slight decrease in band gap (3.31 eV for 400 °C to 3.26 eV for 600 °C). Sensing tests demonstrate that TiO2 annealed at 400 °C displays good performances (sensor response Ra/Rg of ~3.3 at 2.5 ppm and fast response/recovery of 8 and 23 s, respectively) for the detection of H2S at low concentrations in air.

2.
Sci Total Environ ; 943: 173773, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844237

RESUMO

Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.


Assuntos
Baías , Biofilmes , Microbiota , Plásticos , Regiões Antárticas , Baías/microbiologia , RNA Ribossômico 16S , Bactérias/classificação , Incrustação Biológica
3.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673077

RESUMO

The laser surface texturing (LST) technique has recently been used to enhance adhesion bond strength in various coating applications and to create structures with controlled hydrophobic or superhydrophobic surfaces. The texturing processing parameters can be adjusted to tune the surface's polarity, thereby controlling the ratio between the polar and dispersed components of the surface free energy and determining its hydrophobic character. The aim of this work is to systematically select appropriate laser and scan head parameters for high-quality surface topography of metal-based materials. A correlation between texturing parameters and wetting properties was made in view of several technological applications, i.e., for the proper growth of conformal layers onto laser-textured metal surfaces. Surface analyses, carried out by scanning electron microscopy and profilometry, reveal the presence of periodic microchannels decorated with laser-induced periodic surface structures (LIPSS) in the direction parallel to the microchannels. The water contact angle varies widely from about 20° to 100°, depending on the treated material (titanium, nickel, etc.). Nowadays, reducing the wettability transition time from hydrophilicity to hydrophobicity, while also changing environmental conditions, remains a challenge. Therefore, the characteristics of environmental dust and its influence on the properties of the picosecond laser-textured surface (e.g., chemical bonding of samples) have been studied while monitoring ambient conditions.

4.
Sensors (Basel) ; 23(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067949

RESUMO

The development of novel nanomaterials as highly efficient gas-sensing materials is envisaged as one of the most important routes in the field of gas-sensing research. However, developing stable, selective, and efficient materials for these purposes is a highly challenging task requiring numerous design attempts. In this work, a ZrO2/Co3O4 composite is reported, for the first time, as a gas-sensing material for the detection of ethanol. The sensitive and selective detection of ethanol gas at 200 °C has been demonstrated for the ZrO2/Co3O4 (0.20 wt%/0.20 wt%)-based sensor. Furthermore, the sensor showed a very low response/recovery time of 56 s and 363 s, respectively, in response to a pulse of 20 ppm of ethanol and good stability. The interesting gas-sensing property of ZrO2/Co3O4 can be ascribed to both the porous structure, which facilitates the interaction between the target gas and the sensing site, and the p-p-junction-induced built-in electric field. These results indicate that the ZrO2/Co3O4 composite can serve as a heterostructured nanomaterial for the detection of ethanol gas.

5.
Chemistry ; 29(68): e202302588, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671982

RESUMO

We report the absorption spectra and photophysical properties of homo and hetero-aggregate assemblies of a strongly emissive N-annulated perylene dye (P) and of a dyad made of P and a methyl viologen derivative (P-MV), in ethanol-water solutions. In homo-aggregate assemblies of P, the π-π* fluorescence of the isolated chromophore is replaced by excimer emission at lower energy, with a lifetime of 900 ps, due to excimer formation from the initially prepared excitons. In homo-aggregate assemblies of P-MV, photoinduced charge separation, with formation of P+ -MV- species, occurs in 3 ps with a charge recombination of 20 ps. In hetero-aggregate P/P-MV systems, the light energy absorbed by the P components delocalizes over various P subunits, and when a P-MV unit is reached, charge separation occurs; however, excimer emission is present for P/P-MV ratio larger than 3 : 1, indicating that delocalized excitons within the hetero-aggregate systems extend over a limited number of P chromophores.

6.
ACS Appl Nano Mater ; 6(18): 17187-17195, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37767207

RESUMO

The study reports the use of nanoassembly based on cationic cyclodextrin carbon nanotubes (CNT-CDs) and ferrocenylcarnosine (FcCAR) for electrochemical sensing of Hg(II) in aqueous solution. ß-cyclodextrins (CDs) were grafted onto CNTs by a click chemistry reaction between heptakis-(6-azido-6-deoxy)-ß-cyclodextrin and alkyne-terminated CNTs. The cationic amine groups on the CD units were produced by the subsequent reduction of the residual nitrogen groups. The chemical composition and morphology of CNT-CDs were analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy, and thermogravimetric analysis. A N,N-dimethylformamide dispersion of CNT-CDs was cast on the surface of screen-printed carbon electrodes (SPCEs), and the electrochemical response was evaluated by cyclic voltammetry (CV) using [Fe(CN)6]3- as the redox probe. The ability of SPCE/CNT-CD to significantly enhance the electroactive properties of the redox probe was combined with a suitable recognition element (FcCAR) for Hg(II). The electrochemical response of the CNT-CD/FcCAR nanoassembly was evaluated by CV and electrochemical impedance spectroscopy. The analytical performance of the Hg(II) sensor was evaluated by differential pulsed voltammetry and chronoamperometry. The oxidative peak current showed a linear concentration dependence in the range of 1-100 nM, with a sensitivity of 0.12 µA/nM, a limit of detection of 0.50 nM, and a limit of quantification of 1 nM.

7.
Materials (Basel) ; 16(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109937

RESUMO

With the goal of substituting a hard metallic material for the soft Ultra High Molecular Weight Polyethylene (UHMWPE) presently used to make the bases of skis for alpine skiing, we used two non-thermodynamic equilibrium surface treatments with ultra-short (7-8 ps) laser pulses to modify the surface of square plates (50 × 50 mm2) made of austenitic stainless steel AISI 301H. By irradiating with linearly polarized pulses, we obtained Laser Induced Periodic Surface Structures (LIPSS). By laser machining, we produced a laser engraving on the surface. Both treatments produce a surface pattern parallel to one side of the sample. For both treatments, we measured with a dedicated snow tribometer the friction coefficient µ on compacted snow at different temperatures (-10 °C; -5 °C; -3 °C) for a gliding speed range between 1 and 6.1 ms-1. We compared the obtained µ values with those of untreated AISI 301H plates and of stone grinded, waxed UHMWPE plates. At the highest temperature (-3 °C), near the snow melting point, untreated AISI 301H shows the largest µ value (0.09), much higher than that of UHMWPE (0.04). Laser treatments on AISI 301H gave lower µ values approaching UHMWPE. We studied how the surface pattern disposition, with respect to the gliding direction of the sample on snow, affects the µ trend. For LIPSS with pattern, orientation perpendicular to the gliding direction on snow µ (0.05) is comparable with that of UHMWPE. We performed field tests on snow at high temperature (from -0.5 to 0 °C) using full-size skis equipped with bases made of the same materials used for the laboratory tests. We observed a moderate difference in performance between the untreated and the LIPSS treated bases; both performed worse than UHMWPE. Waxing improved the performance of all bases, especially LIPSS treated.

8.
Molecules ; 28(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985534

RESUMO

Water is one of the most important compounds on Earth, yet its material properties are still poorly understood. Here, we use a recently developed two-state, two-(time)scale (TS2) dynamic mean-field model combined with the two-state Sanchez-Lacombe (SL) thermodynamic theory in order to describe the equation of state (density as a function of temperature and pressure) and diffusivity of liquid water. In particular, it is shown that in a relatively wide temperature and pressure range (160 K < T < 360 K; 0 < P < 100 MPa), density and self-diffusion obey a special type of dynamic scaling, similar to the "τTV" scaling of Casalini and Roland, but with the negative exponent γ. The model predictions are consistent with experimental data. The new equation of state can be used for various process models and generalized to include multicomponent mixtures.

9.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987370

RESUMO

Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification.

10.
Materials (Basel) ; 16(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984315

RESUMO

The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data. Furthermore, to gain a deeper insight into the factors influencing metal@LCCs biological responses in relation to their physical properties, in this work, we investigated the bioproperties of the Ag@LCCs nanosystems towards a wound-healing activity. We found that Ag@LCC nanohybrids maintain good antibacterial properties and possess a better capability, in comparison with Ag NPs, of interacting with mammalian cells, allowing us to hypothesize that mainly the Ag@LCCs 3:1 might be suitable for topical application in wound healing, independent of (or in addition to) the antibacterial effect.

11.
Biomater Adv ; 145: 213193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587469

RESUMO

In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death. Antibiotics are the conventional approach for implanted-associated infections, but they have the limitation of increasing antibiotic resistance, a critical worldwide healthcare issue. In this context, the development of anti-infective biomaterials and infection-resistant surfaces can be considered the more effective strategy to prevent the implant colonisation and biofilm formation by bacteria, so reducing the occurrence of implant-associated infections. In the last years, inorganic nanostructures have become extremely appealing for chemical modifications or coatings of Ti surfaces, since they do not generate antibiotic resistance issues and are featured by superior stability, durability, and full compatibility with the sterilization process. In this work, we present a simple, rapid, and cheap chemical nanofunctionalization of titanium (Ti) scaffolds with colloidal ZnO and Mn-doped ZnO nanoparticles (NPs), prepared by a sol-gel method, exhibiting antibacterial activity. ZnO NPs and ZnxMn(1-x)O NPs formation with a size around 10-20nm and band gap values of 3.42 eV and 3.38 eV, respectively, have been displayed by characterization studies. UV-Vis, fluorescence, and Raman investigation suggested that Mn ions acting as dopants in the ZnO lattice. Ti scaffolds have been functionalized through dip coating, obtaining ZnO@Ti and ZnxMn(1-x)O@Ti biomaterials characterized by a continuous nanostructured film. ZnO@Ti and ZnxMn(1-x)O@Ti displayed an enhanced antibacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, compared to NPs in solution with better performance of ZnxMn(1-x)O@Ti respect to ZnO@Ti. Notably, it has been observed that ZnxMn(1-x)O@Ti scaffolds reach a complete eradication for S. aureus and 90 % of reduction for P. aeruginosa. This can be attributed to Zn2+ and Mn2+ metal ions release (as observed by ICP MS experiments) that is also maintained over time (72 h). To the best of our knowledge, this is the first study reported in the literature describing ZnO and Mn-doped ZnO NPs nanofunctionalized Ti scaffolds with improved antibacterial performance, paving the way for the realization of new hybrid implantable devices through a low-cost process, compatible with the biotechnological industrial chain method.


Assuntos
Nanoestruturas , Óxido de Zinco , Titânio/farmacologia , Óxido de Zinco/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Materiais Biocompatíveis/farmacologia , Zinco/farmacologia
12.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501713

RESUMO

Adaptive optics (AO) is employed for the continuous measurement and correction of ocular aberrations. Human eye refractive errors (lower-order aberrations such as myopia and astigmatism) are corrected with contact lenses and excimer laser surgery. Under twilight vision conditions, when the pupil of the human eye dilates to 5-7 mm in diameter, higher-order aberrations affect the visual acuity. The combined use of wavefront (WF) technology and AO systems allows the pre-operative evaluation of refractive surgical procedures to compensate for the higher-order optical aberrations of the human eye, guiding the surgeon in choosing the procedure parameters. Here, we report a brief history of AO, starting from the description of the Shack-Hartmann method, which allowed the first in vivo measurement of the eye's wave aberration, the wavefront sensing technologies (WSTs), and their principles. Then, the limitations of the ocular wavefront ascribed to the IOL polymeric materials and design, as well as future perspectives on improving patient vision quality and meeting clinical requests, are described.

14.
Biomolecules ; 12(8)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36008954

RESUMO

The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanoestruturas , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Computadores , Humanos , Nanoestruturas/uso terapêutico , SARS-CoV-2
15.
Materials (Basel) ; 15(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629727

RESUMO

Gold nanoparticles (Au NPs) have received great attention owing to their biocompatible nature, environmental, and widespread biomedical applications. Au NPs are known as capable to regulate inflammatory responses in several tissues and organs; interestingly, lower toxicity in conjunction with anti-inflammatory effects was reported to occur with Au NPs treatment. Several variables drive this benefit-risk balance, including Au NPs physicochemical properties such as their morphology, surface chemistry, and charge. In our research we prepared hybrid Au@LCC nanocolloids by the Pulsed Laser Ablation, which emerged as a suitable chemically clean technique to produce ligand-free or functionalized nanomaterials, with tight control on their properties (product purity, crystal structure selectivity, particle size distribution). Here, for the first time to our knowledge, we have investigated the bioproperties of Au@LCCs. When tested in vitro on intestinal epithelial cells exposed to TNF-α, Au@LCCs sample at the ratio of 2.6:1 showed a significantly reduced TNF gene expression and induced antioxidant heme oxygenase-1 gene expression better than the 1:1 dispersion. Although deeper investigations are needed, these findings indicate that the functionalization with LCCs allows a better interaction of Au NPs with targets involved in the cell redox status and inflammatory signaling.

16.
Chemistry ; 28(5): e202103310, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752652

RESUMO

The structure of a decanuclear photo- and redox-active dendrimer based on Ru(II) polypyridine subunits, suitable as a light-harvesting multicomponent species for artificial photosynthesis, has been investigated by means of computer modelling. The compound has the general formula [Ru{(µ-dpp)Ru[(µ-dpp)Ru(bpy)2 ]2 }3 ](PF6 )20 (Ru10; bpy=2,2'-bipyridine; dpp=2,3-bis(2'-pyridyl)pyrazine). The stability of possible isomers of each monomer was investigated by performing classical molecular dynamics (MD) and quantum mechanics (QM) simulations on each monomer and comparing the results. The number of stable isomers is reduced to 36 with a prevalence of MER isomerism in the central core, as previously observed by NMR experiments. The simulations on decanuclear dendrimers suggest that the stability of the dendrimer is not linked to the stability of the individual monomers composing the dendrimer but rather governed by the steric constrains originated by the multimetallic assembly. Finally, the self-aggregation of Ru10 and the distribution of the counterions around the complexes is investigated using Molecular Dynamics both in implicit and explicit acetonitrile solution. In representative examples, with nine and four dendrimers, the calculated pair distribution function for the ruthenium centers suggests a self-aggregation mechanism in which the dendrimers are approaching in small blocks and then aggregate all together. Scanning transmission electron microscopy complements the investigation, supporting the formation of different aggregates at various concentrations.


Assuntos
Dendrímeros , Rutênio , Simulação de Dinâmica Molecular , Oxirredução , Fotossíntese
17.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641442

RESUMO

Liquid's behaviour, when close to critical points, is of extreme importance both for fundamental research and industrial applications. A detailed knowledge of the structural-dynamical correlations in their proximity is still today a target to reach. Liquid water anomalies are ascribed to the presence of a second liquid-liquid critical point, which seems to be located in the very deep supercooled regime, even below 200 K and at pressure around 2 kbar. In this work, the thermal behaviour of the self-diffusion coefficient for liquid water is analyzed, in terms of a two-states model, for the first time in a very wide thermal region (126 K < T < 623 K), including those of the two critical points. Further, the corresponding configurational entropy and isobaric-specific heat have been evaluated within the same interval. The two liquid states correspond to high and low-density water local structures that play a primary role on water dynamical behavior over 500 K.

18.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502937

RESUMO

Traditional pharmacotherapy suffers from multiple drawbacks that hamper patient treatment such as antibiotic resistances or low drug selectivity and toxicity during systemic applications. Some functional hybrid nanomaterials are designed to handle the drug release process under remote-control. More attention has recently been paid to synthetic polyelectrolytes for their intrinsic properties which allow them to rearrange into compact structures, ideal to be used as drug carriers or probes influencing biochemical processes. The presence of Ag nanoparticles (NPs) in the Poly methyl acrylate (PMA) matrix leads to an enhancement of drug release efficiency, even using a low-power laser whose wavelength is far from the Ag Surface Plasmon Resonance (SPR) peak. Further, compared to the colloids, the nanofiber-based drug delivery system has shown shorter response time and more precise control over the release rate. The efficiency and timing of involved drug release mechanisms has been estimated by the Weibull distribution function, whose parameters indicate that the release mechanism of nanofibers obeys Fick's first law while a non-Fickian character controlled by diffusion and relaxation of polymer chains occurs in the colloidal phase.

19.
Chemistry ; 27(68): 16904-16911, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34418201

RESUMO

The luminophore Ru(bpy)2 (dcbpy)2+ (bpy=2,2'-bipyridine; dcbpy=4,4'-dicarboxy-2,2'-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2 ⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2 ⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2 ⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)3 2+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and "free" IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104  s-1 ) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2 ⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2 ⊂NS-RuCh.


Assuntos
Quitosana , Nanopartículas , Compostos Organometálicos , Rutênio , Irídio , Água
20.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206184

RESUMO

Münchnones are mesoionic oxazolium 5-oxides with azomethine ylide characteristics that provide pyrrole derivatives by a 1,3-dipolar cycloaddition (1,3-DC) reaction with acetylenic dipolarophiles. Their reactivity was widely exploited for the synthesis of small molecules, but it was not yet investigated for the functionalization of graphene-based materials. Herein, we report our results on the preparation of münchnone functionalized graphene via cycloaddition reactions, followed by the spontaneous loss of carbon dioxide and its further chemical modification to silver/nisin nanocomposites to confer biological properties. A direct functionalization of graphite flakes into few-layers graphene decorated with pyrrole rings on the layer edge was achieved. The success of functionalization was confirmed by micro-Raman and X-ray photoelectron spectroscopies, scanning transmission electron microscopy, and thermogravimetric analysis. The 1,3-DC reactions of münchnone dipole with graphene have been investigated using density functional theory to model graphene. Finally, we explored the reactivity and the processability of münchnone functionalized graphene to produce enriched nano biomaterials endowed with antimicrobial properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA