Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892003

RESUMO

Endometriosis is one of the most common causes of chronic pelvic pain and infertility, affecting 10% of women of reproductive age. A delay of up to 9 years is estimated between the onset of symptoms and the diagnosis of endometriosis. Endometriosis is currently defined as the presence of endometrial epithelial and stromal cells at ectopic sites; however, advances in research on endometriosis have some authors believing that endometriosis should be re-defined as "a fibrotic condition in which endometrial stroma and epithelium can be identified". There are several theories on the etiology of the disease, but the origin of endometriosis remains unclear. This review addresses the role of microRNAs (miRNAs), which are naturally occurring post-transcriptional regulatory molecules, in endometriotic lesion development, the inflammatory environment within the peritoneal cavity, including the role that cytokines play during the development of the disease, and how animal models have helped in our understanding of the pathology of this enigmatic disease.


Assuntos
Endometriose , MicroRNAs , Endometriose/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/fisiopatologia , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Endométrio/metabolismo , Endométrio/patologia , Citocinas/metabolismo , Modelos Animais de Doenças
2.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38766130

RESUMO

Endometrial stromal cell decidualization is required for pregnancy success. Although this process is integral to fertility, many of the intricate molecular mechanisms contributing to decidualization remain undefined. One pathway that has been implicated in endometrial stromal cell decidualization in humans in vitro is the Hippo signaling pathway. Two previously conducted studies showed that the effectors of the Hippo signaling pathway, YAP1 and WWTR1, were required for decidualization of primary stromal cells in culture. To investigate the in vivo role of YAP1 and WWTR1 in decidualization and pregnancy initiation, we generated a Progesterone Cre mediated partial double knockout (pdKO) of Yap1 and Wwtr1. Female pdKOs exhibited subfertility, a compromised decidualization response, partial interruption in embryo transport, blunted endometrial receptivity, delayed implantation and subsequent embryonic development, and a unique transcriptional profile. Bulk mRNA sequencing revealed aberrant maternal remodeling evidenced by significant alterations in extracellular matrix proteins at 7.5 days post-coitus in pdKO dams and enrichment for terms associated with fertility-compromising diseases like pre-eclampsia and endometriosis. Our results indicate a required role for YAP1 and WWTR1 for successful mammalian uterine function and pregnancy success.

3.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712187

RESUMO

Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.

4.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798560

RESUMO

The mechanisms underlying the pathophysiology of endometriosis, characterized by the presence of endometrium-like tissue outside the uterus, remain poorly understood. This study aimed to identify cell type-specific gene expression changes in superficial peritoneal endometriotic lesions and elucidate the crosstalk among the stroma, epithelium, and macrophages compared to patient-matched eutopic endometrium. Surprisingly, comparison between lesions and eutopic endometrium revealed transcriptional similarities, indicating minimal alterations in the sub-epithelial stroma and epithelium of lesions. Spatial transcriptomics highlighted increased signaling between the lesion epithelium and macrophages, emphasizing the role of the epithelium in driving lesion inflammation. We propose that the superficial endometriotic lesion epithelium orchestrates inflammatory signaling and promotes a pro-repair phenotype in macrophages, providing a new role for Complement 3 in lesion pathobiology. This study underscores the significance of considering spatial context and cellular interactions in uncovering mechanisms governing disease in endometriotic lesions.

6.
Biol Reprod ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971363
7.
Reprod Sci ; 30(10): 2932-2944, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37188982

RESUMO

MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.


Assuntos
Endometriose , MicroRNAs , Animais , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Endometriose/metabolismo , Papio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Linhagem Celular , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
8.
FASEB J ; 37(7): e22983, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249327

RESUMO

In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.


Assuntos
Progesterona , Útero , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Epitélio/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Útero/metabolismo
9.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104033

RESUMO

The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/genética , Linhagem Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo , Perfilação da Expressão Gênica
10.
BMC Biol ; 20(1): 209, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153585

RESUMO

BACKGROUND: SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium. RESULTS: Through genome-wide analysis of human endometriotic epithelial cells, we show that more than half of ARID1A binding sites are marked by the variant histone H3.3, including active regulatory elements such as super-enhancers. ARID1A knockdown leads to H3.3 depletion and gain of canonical H3.1/3.2 at ARID1A-bound active regulatory elements, and a concomitant redistribution of H3.3 toward genic elements. ARID1A interactions with the repressive chromatin remodeler CHD4 (NuRD) are associated with H3.3, and ARID1A is required for CHD4 recruitment to H3.3. ZMYND8 interacts with CHD4 to suppress a subset of ARID1A, CHD4, and ZMYND8 co-bound, H3.3+ H4K16ac+ super-enhancers near genes governing extracellular matrix, motility, adhesion, and epithelial-to-mesenchymal transition. Moreover, these gene expression alterations are observed in human endometriomas. CONCLUSIONS: These studies demonstrate that ARID1A-containing BAF complexes are required for maintenance of the histone variant H3.3 at active regulatory elements, such as super-enhancers, and this function is required for the physiologically relevant activities of alternative chromatin remodelers.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Histonas , Fatores de Transcrição , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Histonas/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Biol Reprod ; 107(4): 977-983, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835555

RESUMO

The Notch signaling pathway is required for reproductive success. This pathway activates its transcriptional effector, recombination signal binding protein for immunoglobulin kappa J (Rbpj), to induce transcription of its target genes. This signaling pathway is required for successful decidualization, implantation, and uterine repair following parturition. To identify the compartmental specific roles of the Notch signaling pathway in the establishment of pregnancy, we generated epithelial and decidual stromal cell specific knockouts of Rbpj utilizing lactoferrin iCre and Prl8A2 iCre, respectively. Both conditional knockout mouse models were fertile. The Rbpj epithelial knockout mice displayed 27% resorption sites at E15.5, but this did not significantly impact the number of live born pups compared with controls. In addition, the Rbpj epithelial knockout mice displayed increased estrogen signaling in their stromal compartment. Given that both mouse models exhibited fertility comparable to control animals, the epithelial and stromal specific nature of the iCre recombinases utilized, and previously published Rbpj total uterine knockout mouse models, we conclude that Notch effector Rbpj signaling is required at the initiation of pregnancy to support decidualization in stromal cells, but that Rbpj is not required in the epithelial compartment nor is it required for post-implantation pregnancy success.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Receptores Notch , Animais , Proteínas de Transporte/metabolismo , Estrogênios , Feminino , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Lactoferrina/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética , Transdução de Sinais/fisiologia , Células Estromais/metabolismo
12.
Reproduction ; 164(2): 41-54, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679138

RESUMO

Although a non-malignant gynecological disorder, endometriosis displays some pathogenic features of malignancy, such as cell proliferation, migration, invasion and adaptation to hypoxia. Current treatments of endometriosis include pharmacotherapy and/or surgery, which are of limited efficacy and often associated with adverse side effects. Therefore, to develop more effective therapies to treat this disease, a broader understanding of the underlying molecular mechanisms that underpin endometriosis needs to be attained. Using immortalized human endometriotic epithelial and stromal cell lines, we demonstrate that the early growth response 1 (EGR1) transcription factor is essential for cell proliferation, migration and invasion, which represent some of the pathogenic properties of endometriotic cells. Genome-wide transcriptomics identified an EGR1-dependent transcriptome in human endometriotic epithelial cells that potentially encodes a diverse spectrum of proteins that are known to be involved in tissue pathologies. To underscore the utility of this transcriptomic data set, we demonstrate that carbonic anhydrase 9 (CA9), a homeostatic regulator of intracellular pH, is not only a molecular target of EGR1 but is also important for maintaining many of the cellular properties of human endometriotic epithelial cells that are also ascribed to EGR1. Considering therapeutic intervention strategies are actively being developed for EGR1 and CAIX in the treatment of other pathologies, we believe EGR1 and its transcriptome (which includes CA9) will offer not only a new conceptual framework to advance our understanding of endometriosis but will also furnish new molecular vulnerabilities to be leveraged as potential therapeutic options in the future treatment of endometriosis.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Endometriose , Movimento Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Endometriose/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Células Estromais/metabolismo , Fatores de Transcrição/metabolismo
13.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575097

RESUMO

The uterine luminal epithelium folds characteristically in mammals, including humans, horses and rodents. Improper uterine folding in horses results in pregnancy failure, but the precise function of folds remains unknown. Here, we uncover dynamic changes in the 3D uterine folding pattern during early pregnancy with the entire lumen forming pre-implantation transverse folds along the mesometrial-antimesometrial axis. Using a time course, we show that transverse folds are formed before embryo spacing, whereas implantation chambers form as the embryo begins attachment. Thus, folds and chambers are two distinct structures. Transverse folds resolve to form a flat implantation region, after which an embryo arrives at its center to attach and form the post-implantation chamber. Our data also suggest that the implantation chamber facilitates embryo rotation and its alignment along the uterine mesometrial-antimesometrial axis. Using WNT5A- and RBPJ-deficient mice that display aberrant folds, we show that embryos trapped in longitudinal folds display misalignment of the embryo-uterine axes, abnormal chamber formation and defective post-implantation morphogenesis. These mouse models with disrupted uterine folding provide an opportunity to understand uterine structure-based mechanisms that are crucial for implantation and pregnancy success. This article has an associated 'The people behind the papers' interview.


Assuntos
Implantação do Embrião , Útero , Animais , Embrião de Mamíferos , Epitélio , Feminino , Cavalos , Humanos , Mamíferos , Camundongos , Gravidez
14.
Nat Commun ; 13(1): 1101, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232969

RESUMO

Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects.


Assuntos
Endometriose , Infertilidade Feminina , Peptídeos e Proteínas de Sinalização Intracelular , Receptor ErbB-2 , Doenças Uterinas , Animais , Endometriose/genética , Endometriose/metabolismo , Endométrio/anormalidades , Endométrio/metabolismo , Feminino , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Progesterona/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Doenças Uterinas/genética , Doenças Uterinas/metabolismo
15.
Cells ; 11(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326450

RESUMO

Endometrial cancer (EC) is characterized by high estrogen levels unopposed by progesterone. Treatment with progestins is standard for early EC, but the response to progestins is dependent on progesterone receptor (PGR) expression. Here, we show that the expression of PGR in endometrial epithelial cells is dependent on ARID1A, a DNA-binding subunit of the SWI/SNF chromatin-remodeling complex that is commonly mutated in EC. In endometrial epithelial cells with estrogen receptor overexpression, we find that ARID1A promotes estrogen signaling and regulates common gene expression programs. Normally, endometrial epithelial cells expressing estrogen receptors respond to estrogen by upregulating the PGR. However, when ARID1A expression is lost, upregulation of PGR expression is significantly reduced. This phenomenon can also occur following the loss of the SWI/SNF subunit BRG1, suggesting a role for ARID1A- and BRG1-containing complexes in PGR regulation. We find that PGR is regulated by a bivalent promoter, which harbors both H3K4me3 and H3K27me3 histone tail modifications. H3K27me3 is deposited by EZH2, and inhibition of EZH2 in the context of ARID1A loss results in restoration of estrogen-induced PGR expression. Our results suggest a role for ARID1A deficiency in the loss of PGR in late-stage EC and a therapeutic utility for EZH2 inhibitors in this disease.


Assuntos
Histonas , Proteínas Nucleares , Estrogênios/farmacologia , Feminino , Humanos , Proteínas Nucleares/metabolismo , Progestinas/farmacologia , Receptores de Progesterona/metabolismo
16.
Transl Psychiatry ; 12(1): 35, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078975

RESUMO

Depression during and after pregnancy affects up to 20% of pregnant women, but the biological underpinnings remain incompletely understood. As pregnancy progresses, the immune system changes to facilitate fetal development, leading to distinct fluctuations in the production of pro-inflammatory factors and neuroactive tryptophan metabolites throughout the peripartum period. Therefore, it is possible that depression in pregnancy could constitute a specific type of inflammation-induced depression. Both inflammatory factors and kynurenine metabolites impact neuroinflammation and glutamatergic neurotransmission and can therefore affect mood and behavior. To determine whether cytokines and kynurenine metabolites can predict the development of depression in pregnancy, we analyzed blood samples and clinical symptoms in 114 women during each trimester and the postpartum. We analyzed plasma IL-1ß, IL-2, -6, -8, -10, TNF, kynurenine, tryptophan, serotonin, kynurenic- quinolinic- and picolinic acids and used mixed-effects models to assess the association between biomarkers and depression severity. IL-1ß and IL-6 levels associated positively with severity of depressive symptoms across pregnancy and the postpartum, and that the odds of experiencing significant depressive symptoms increased by >30% per median absolute deviation for both IL-1ß and IL-6 (both P = 0.01). A combination of cytokines and kynurenine metabolites in the 2nd trimester had a >99% probability of accurately predicting 3rd trimester depression, with an ROC AUC > 0.8. Altogether, our work shows that cytokines and tryptophan metabolites can predict depression during pregnancy and could be useful as clinical markers of risk. Moreover, inflammation and kynurenine pathway enzymes should be considered possible therapeutic targets in peripartum depression.


Assuntos
Depressão , Triptofano , Citocinas , Feminino , Humanos , Cinurenina , Doenças Neuroinflamatórias , Gravidez
17.
Trends Endocrinol Metab ; 32(12): 1044-1057, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34479767

RESUMO

The Notch signaling pathway is conserved among mammalian species and controls proliferation, differentiation, and cell death in many organs throughout the body including the reproductive tract. Notch signaling plays critical roles in the development and function of both the male and female reproductive systems. Specifically, within the female reproductive tract, Notch signaling is hormone regulated and mediates key reproductive events important for ovarian and uterine function. In this review, we highlight the tissues that express Notch receptors, ligands, and downstream effectors and distinguish how these molecules regulate reproductive function in male and female mice, non-human primates, and humans. Finally, we describe some of the aberrations in Notch signaling in female reproductive pathologies and identify opportunities for future investigation.


Assuntos
Receptores Notch , Transdução de Sinais , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Mamíferos/metabolismo , Camundongos , Ovário/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Reprodução/genética , Transdução de Sinais/genética
18.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807176

RESUMO

Uterine fibroid tissues are often compared to their matched myometrium in an effort to understand their pathophysiology, but it is not clear whether the myometria of uterine fibroid patients represent truly non-disease control tissues. We analyzed the transcriptomes of myometrial samples from non-fibroid patients (M) and compared them with fibroid (F) and matched myometrial (MF) samples to determine whether there is a phenotypic difference between fibroid and non-fibroid myometria. Multidimensional scaling plots revealed that M samples clustered separately from both MF and F samples. A total of 1169 differentially expressed genes (DEGs) (false discovery rate < 0.05) were observed in the MF comparison with M. Overrepresented Gene Ontology terms showed a high concordance of upregulated gene sets in MF compared to M, particularly extracellular matrix and structure organization. Gene set enrichment analyses showed that the leading-edge genes from the TGFß signaling and inflammatory response gene sets were significantly enriched in MF. Overall comparison of the three tissues by three-dimensional principal component analyses showed that M, MF, and F samples clustered separately from each other and that a total of 732 DEGs from F vs. M were not found in the F vs. MF, which are likely understudied in the pathogenesis of uterine fibroids and could be key genes for future investigation. These results suggest that the transcriptome of fibroid-associated myometrium is different from that of non-diseased myometrium and that fibroid studies should consider using both matched myometrium and non-diseased myometrium as controls.


Assuntos
Leiomioma/genética , Miométrio/patologia , Útero/patologia , Adulto , Feminino , Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética/métodos , Genótipo , Humanos , Leiomioma/patologia , Pessoa de Meia-Idade , Miométrio/metabolismo , Fenótipo , Análise de Componente Principal/métodos , Transcriptoma/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Útero/metabolismo
19.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33693877

RESUMO

About 40% of women with infertility and 70% of women with pelvic pain suffer from endometriosis. The pregnancy rate in women undergoing IVF with low endometrial integrin αvß3 (LEI) expression is significantly lower compared to the women with high endometrial integrin αvß3 (HEI). Mid-secretory eutopic endometrial biopsies were obtained from healthy controls (C; n=3), and women with HEI (n=4) and LEI (n=4) and endometriosis. Changes in gene expression were assessed using human gene arrays and DNA methylation data were derived using 385 K Two-Array Promoter Arrays. Transcriptional analysis revealed that LEI and C groups clustered separately with 396 differentially expressed genes (DEGs) (P<0.01: 275 up and 121 down) demonstrating that transcriptional and epigenetic changes are distinct in the LEI eutopic endometrium compared to the C and HEI group. In contrast, HEI vs C and HEI vs LEI comparisons only identified 83 and 45 DEGs, respectively. The methylation promoter array identified 1304 differentially methylated regions in the LEI vs C comparison. The overlap of gene and methylation array data identified 14 epigenetically dysregulated genes and quantitative RT-PCR analysis validated the transcriptomic findings. The analysis also revealed that aryl hydrocarbon receptor (AHR) was hypomethylated and significantly overexpressed in LEI samples compared to C. Further analysis validated that AHR transcript and protein expression are significantly (P<0.05) increased in LEI women compared to C. The increase in AHR, together with the altered methylation status of the 14 additional genes, may provide a diagnostic tool to identify the subset of women who have endometriosis-associated infertility.


Assuntos
Metilação de DNA , Endometriose/genética , Endométrio/metabolismo , Infertilidade Feminina/etiologia , Integrina alfaVbeta3/biossíntese , Transcriptoma , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biópsia , Regulação para Baixo , Endometriose/complicações , Endometriose/metabolismo , Endométrio/patologia , Feminino , Humanos , Infertilidade Feminina/genética , Integrina alfaVbeta3/genética , Pessoa de Meia-Idade , Análise de Componente Principal , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Adulto Jovem
20.
Reprod Sci ; 28(6): 1626-1636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33533008

RESUMO

The endometrium is one of the most dynamic organs in the human body. Until now, cell lines have furthered the understanding of endometrial biology and associated diseases, but they failed to recapitulate the key physiological aspects of the endometrium, especially as it relates to its complex architecture and functions. Organoid culture systems have become an alternative approach to reproduce biological functions of tissues in vitro. Endometrial organoids have now been established from stem/progenitor cells and/or differentiated cells by several methods, which represents a promising tool to gain a deeper understanding of this dynamic organ. In this review, we will discuss the establishment, characteristics, applications, and potential challenges and directions of endometrial organoids.


Assuntos
Endométrio , Organoides , Animais , Técnicas de Cultura de Células em Três Dimensões , Técnicas de Cultura , Embrião de Mamíferos/fisiologia , Neoplasias do Endométrio , Endometriose , Endométrio/fisiologia , Vesículas Extracelulares , Feminino , Hormônios Esteroides Gonadais/farmacologia , Humanos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/fisiologia , Síndrome do Ovário Policístico , Gravidez , Células-Tronco , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...