Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Biomed Inform ; 143: 104398, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230405

RESUMO

BACKGROUND: In return for their nutritional properties and broad availability, cereal crops have been associated with different alimentary disorders and symptoms, with the majority of the responsibility being attributed to gluten. Therefore, the research of gluten-related literature data continues to be produced at ever-growing rates, driven in part by the recent exploratory studies that link gluten to non-traditional diseases and the popularity of gluten-free diets, making it increasingly difficult to access and analyse practical and structured information. In this sense, the accelerated discovery of novel advances in diagnosis and treatment, as well as exploratory studies, produce a favourable scenario for disinformation and misinformation. OBJECTIVES: Aligned with, the European Union strategy "Delivering on EU Food Safety and Nutrition in 2050″ which emphasizes the inextricable links between imbalanced diets, the increased exposure to unreliable sources of information and misleading information, and the increased dependency on reliable sources of information; this paper presents GlutKNOIS, a public and interactive literature-based database that reconstructs and represents the experimental biomedical knowledge extracted from the gluten-related literature. The developed platform includes different external database knowledge, bibliometrics statistics and social media discussion to propose a novel and enhanced way to search, visualise and analyse potential biomedical and health-related interactions in relation to the gluten domain. METHODS: For this purpose, the presented study applies a semi-supervised curation workflow that combines natural language processing techniques, machine learning algorithms, ontology-based normalization and integration approaches, named entity recognition methods, and graph knowledge reconstruction methodologies to process, classify, represent and analyse the experimental findings contained in the literature, which is also complemented by data from the social discussion. RESULTS AND CONCLUSIONS: In this sense, 5814 documents were manually annotated and 7424 were fully automatically processed to reconstruct the first online gluten-related knowledge database of evidenced health-related interactions that produce health or metabolic changes based on the literature. In addition, the automatic processing of the literature combined with the knowledge representation methodologies proposed has the potential to assist in the revision and analysis of years of gluten research. The reconstructed knowledge base is public and accessible at https://sing-group.org/glutknois/.


Assuntos
Glutens , Bases de Conhecimento , Humanos , Aprendizado de Máquina , Algoritmos , Processamento de Linguagem Natural
2.
mSystems ; 8(3): e0007923, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37219498

RESUMO

The pks island is one of the most prevalent pathogenicity islands among the Escherichia coli strains that colonize the colon of colorectal carcinoma (CRC) patients. This pathogenic island encodes the production of a nonribosomal polyketide-peptide named colibactin, which induces double-strand breaks in DNA molecules. Detection or even depletion of this pks-producing bacteria could help to understand the role of these strains in the context of CRC. In this work, we performed a large-scale in silico screening of the pks cluster in more than 6,000 isolates of E. coli. The results obtained reveal that not all the pks-detected strains could produce a functional genotoxin and, using antibodies against pks-specific peptides from surface cell proteins, a methodology for detection and depletion of pks+ bacteria in gut microbiotas was proposed. With our method, we were able to deplete a human gut microbiota of this pks+ strains, opening the door to strain-directed microbiota modification and intervention studies that allow us to understand the relation between these genotoxic strains and some gastrointestinal diseases. IMPORTANCE The human gut microbiome has also been hypothesized to play a crucial role in the development and progression of colorectal carcinoma (CRC). Between the microorganisms of this community, the Escherichia coli strains carrying the pks genomic island were shown to be capable of promoting colon tumorigenesis in a colorectal cancer mouse model, and their presence seems to be directly related to a distinct mutational signature in patients suffering CRC. This work proposes a novel method for the detection and depletion of pks-carrying bacteria in human gut microbiotas. In contrast to methods based on probes, this methodology allows the depletion of low-abundance bacterial strains maintaining the viability of both targeted and non-targeted fractions of the microbiota, allowing the study of the contribution of these pks-carrying strains to different diseases, such as CRC, and their role in other physiological, metabolic or immune processes.


Assuntos
Neoplasias Colorretais , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Proteínas de Membrana/genética , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/microbiologia
3.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770857

RESUMO

Developing models able to predict interactions between drugs and enzymes is a primary goal in computational biology since these models may be used for predicting both new active drugs and the interactions between known drugs on untested targets. With the compilation of a large dataset of drug-enzyme pairs (62,524), we recognized a unique opportunity to attempt to build a novel multi-target machine learning (MTML) quantitative structure-activity relationship (QSAR) model for probing interactions among different drugs and enzyme targets. To this end, this paper presents an MTML-QSAR model based on using the features of topological drugs together with the artificial neural network (ANN) multi-layer perceptron (MLP). Validation of the final best model found was carried out by internal cross-validation statistics and other relevant diagnostic statistical parameters. The overall accuracy of the derived model was found to be higher than 96%. Finally, to maximize the diffusion of this model, a public and accessible tool has been developed to allow users to perform their own predictions. The developed web-based tool is public accessible and can be downloaded as free open-source software.


Assuntos
Relação Quantitativa Estrutura-Atividade , Software , Redes Neurais de Computação , Aprendizado de Máquina , Internet
4.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850508

RESUMO

Motivated by the pervasiveness of artificial intelligence (AI) and the Internet of Things (IoT) in the current "smart everything" scenario, this article provides a comprehensive overview of the most recent research at the intersection of both domains, focusing on the design and development of specific mechanisms for enabling a collaborative inference across edge devices towards the in situ execution of highly complex state-of-the-art deep neural networks (DNNs), despite the resource-constrained nature of such infrastructures. In particular, the review discusses the most salient approaches conceived along those lines, elaborating on the specificities of the partitioning schemes and the parallelism paradigms explored, providing an organized and schematic discussion of the underlying workflows and associated communication patterns, as well as the architectural aspects of the DNNs that have driven the design of such techniques, while also highlighting both the primary challenges encountered at the design and operational levels and the specific adjustments or enhancements explored in response to them.

5.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1850-1860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33237866

RESUMO

SEDA (SEquence DAtaset builder) is a multiplatform desktop application for the manipulation of FASTA files containing DNA or protein sequences. The convenient graphical user interface gives access to a collection of simple (filtering, sorting, or file reformatting, among others) and advanced (BLAST searching, protein domain annotation, gene annotation, and sequence alignment) utilities not present in similar applications, which eases the work of life science researchers working with DNA and/or protein sequences, especially those who have no programming skills. This paper presents general guidelines on how to build efficient data handling protocols using SEDA, as well as practical examples on how to prepare high-quality datasets for single gene phylogenetic studies, the characterization of protein families, or phylogenomic studies. The user-friendliness of SEDA also relies on two important features: (i) the availability of easy-to-install distributable versions and installers of SEDA, including a Docker image for Linux, and (ii) the facility with which users can manage large datasets. SEDA is open-source, with GNU General Public License v3.0 license, and publicly available at GitHub (https://github.com/sing-group/seda). SEDA installers and documentation are available at https://www.sing-group.org/seda/.


Assuntos
Proteínas , Software , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência
6.
Artif Intell Med ; 118: 102131, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34412847

RESUMO

Big data importance and potential are becoming more and more relevant nowadays, enhanced by the explosive growth of information volume that is being generated on the Internet in the last years. In this sense, many experts agree that social media networks are one of the internet areas with higher growth in recent years and one of the fields that are expected to have a more significant increment in the coming years. Similarly, social media sites are quickly becoming one of the most popular platforms to discuss health issues and exchange social support with others. In this context, this work presents a new methodology to process, classify, visualise and analyse the big data knowledge produced by the sociome on social media platforms. This work proposes a methodology that combines natural language processing techniques, ontology-based named entity recognition methods, machine learning algorithms and graph mining techniques to: (i) reduce the irrelevant messages by identifying and focusing the analysis only on individuals and patient experiences from the public discussion; (ii) reduce the lexical noise produced by the different ways in how users express themselves through the use of domain ontologies; (iii) infer the demographic data of the individuals through the combined analysis of textual, geographical and visual profile information; (iv) perform a community detection and evaluate the health topic study combining the semantic processing of the public discourse with knowledge graph representation techniques; and (v) gain information about the shared resources combining the social media statistics with the semantical analysis of the web contents. The practical relevance of the proposed methodology has been proven in the study of 1.1 million unique messages from >400,000 distinct users related to one of the most popular dietary fads that evolve into a multibillion-dollar industry, i.e., gluten-free food. Besides, this work analysed one of the least research fields studied on Twitter concerning public health (i.e., the allergies or immunology diseases as celiac disease), discovering a wide range of health-related conclusions.


Assuntos
Glutens , Mídias Sociais , Algoritmos , Glutens/efeitos adversos , Humanos , Aprendizado de Máquina , Processamento de Linguagem Natural
7.
Interdiscip Sci ; 13(2): 334-343, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009546

RESUMO

The identification of clinically relevant bacterial amino acid changes can be performed using different methods aimed at the identification of genes showing positively selected amino acid sites (PSS). Nevertheless, such analyses are time consuming, and the frequency of genes showing evidence for PSS can be low. Therefore, the development of a pipeline that allows the quick and efficient identification of the set of genes that show PSS is of interest. Here, we present Auto-PSS-Genome, a Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that show PSS using three different methods, namely codeML, FUBAR, and omegaMap. Auto-PSS-Genome accepts as input a set of FASTA files, one per genome, containing all coding sequences, thus minimizing the work needed to conduct positively selected sites analyses. The Auto-PSS-Genome pipeline identifies orthologous gene sets and corrects for multiple possible problems in input FASTA files that may prevent the automated identification of genes showing PSS. A FASTA file containing all coding sequences can also be given as an external global reference, thus easing the comparison of results across species, when gene names are different. In this work, we use Auto-PSS-Genome to analyse Mycobacterium leprae (that causes leprosy), and the closely related species M. haemophilum, that mainly causes ulcerating skin infections and arthritis in persons who are severely immunocompromised, and in children causes cervical and perihilar lymphadenitis. The genes identified in these two species as showing PSS may be those that are partially responsible for virulence and resistance to drugs.


Assuntos
Aminoácidos/química , Bactérias , Criança , Genoma Bacteriano , Humanos , Mycobacterium leprae/genética , Virulência
8.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2302-2313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32149650

RESUMO

Glycoside hydrolases are responsible for the enzymatic deconstruction of complex carbohydrates. Most of the families are known to conserve the catalytic machinery and molecular mechanisms. This work introduces a new method to predict glycolytic abilities in sequenced genomes and thus, gain a better understanding of how to target specific carbohydrates and identify potentially interesting sources of specialised enzymes. Genome sequences are aligned to those of organisms with expertly curated glycolytic abilities. Clustering of homology scores helps identify organisms that share common abilities and the most promising organisms regarding specific glycolytic abilities. The method has been applied to members of the bacterial families Ruminococcaceae (39 genera), Eubacteriaceae (11 genera) and Lachnospiraceae (59 genera), which hold major representatives of the human gut microbiota. The method predicted the potential presence of glycoside hydrolases in 1701 species of these genera. Here, the validity and practical usefulness of the method is discussed based on the predictions obtained for members of the genus Ruminococcus. Results were consistent with existing literature and offer useful, complementary insights to comparative genomics and physiological testing. The implementation of the Gleukos web portal (http://sing-group.org/gleukos) offers a public service to those interested in targeting microbial carbohydrate metabolism for biotechnological and health applications.


Assuntos
Proteínas de Bactérias/genética , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/genética , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Biologia Computacional , Genoma Bacteriano/genética , Glicosídeo Hidrolases/metabolismo , Humanos
9.
Front Immunol ; 11: 1470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760401

RESUMO

A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected -LTBI- or uninfected -NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas.


Assuntos
Tuberculose Latente/diagnóstico , Modelos Imunológicos , Análise de Sequência de RNA/métodos , Linfócitos T/imunologia , Tuberculose/diagnóstico , Doença Aguda , Adulto , Idoso , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Interferon gama/metabolismo , Tuberculose Latente/genética , Tuberculose Latente/imunologia , Ativação Linfocitária , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Tuberculose/genética , Tuberculose/imunologia
10.
Microorganisms ; 8(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413974

RESUMO

Bifidobacteria are among the most abundant microorganisms inhabiting the intestine of humans and many animals. Within the genus Bifidobacterium, several beneficial effects have been attributed to strains belonging to the subspecies Bifidobacterium longum subsp. longum and Bifidobacterium longum subsp. infantis, which are often found in infants and adults. The increasing numbers of sequenced genomes belonging to these two subspecies, and the availability of novel computational tools focused on predicting glycolytic abilities, with the aim of understanding the capabilities of degrading specific carbohydrates, allowed us to depict the potential glycoside hydrolases (GH) of these bacteria, with a focus on those GH profiles that differ in the two subspecies. We performed an in silico examination of 188 sequenced B. longum genomes and depicted the commonly present and strain-specific GHs and GH families among representatives of this species. Additionally, GH profiling, genome-based and 16S rRNA-based clustering analyses showed that the subspecies assignment of some strains does not properly match with their genetic background. Furthermore, the analysis of the potential GH component allowed the distinction of clear GH patterns. Some of the GH activities, and their link with the two subspecies under study, are further discussed. Overall, our in silico analysis poses some questions about the suitability of considering the GH activities of B. longum subsp. longum and B. longum subsp. infantis to gain insight into the characterization and classification of these two subspecies with probiotic interest.

11.
Interdiscip Sci ; 12(3): 252-257, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32350726

RESUMO

The human body immune system, metabolism and homeostasis are affected by microbes. Dysbiosis occurs when the homeostatic equilibrium is disrupted due to an alteration in the normal microbiota of the intestine. Dysbiosis can cause cancer, and also affect a patient's ability to respond to treatment. Metataxonomics seeks to identify the bacteria present in a biological sample, based on the sequencing of the 16S rRNA genetic marker. Precision medicine attempts to find relationships between the microbiota and the risk of acquiring cancer, and design new therapies targeting bacteria. Flexible and portable bioinformatic pipelines are necessary to be able to bring metataxonomics to the clinical field, which allow groups of biological samples to be classified according to their diversity in the microbiota. With this aim we implemented Metatax, a new pipeline to analyze biological samples based on 16S rRNA gene sequencing. The results obtained with our pipeline should complement those obtained by sequencing a patient's DNA and RNA, in addition to clinical data, to improve knowledge of the possible reasons for a disease or a worse response to treatment.


Assuntos
Medicina de Precisão/métodos , RNA Ribossômico 16S/genética , Biologia Computacional/métodos , Disbiose/genética , Humanos
12.
Biomed Res Int ; 2019: 1049575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662963

RESUMO

Hospital-acquired Infections (HAIs) surveillance, defined as the systematic collection of data related to a certain health event, is considered an essential dimension for a prevention HAI program to be effective. In recent years, new automated HAI surveillance methods have emerged with the wide adoption of electronic health records (EHR). Here we present the validation results against the gold standard of HAIs diagnosis of the InNoCBR system deployed in the Ourense University Hospital Complex (Spain). Acting as a totally autonomous system, InNoCBR achieves a HAI sensitivity of 70.83% and a specificity of 97.76%, with a positive predictive value of 77.24%. The kappa index for infection type classification is 0.67. Sensitivity varies depending on infection type, where bloodstream infection attains the best value (93.33%), whereas the respiratory infection could be improved the most (53.33%). Working as a semi-automatic system, InNoCBR reaches a high level of sensitivity (81.73%), specificity (99.47%), and a meritorious positive predictive value (94.33%).


Assuntos
Infecção Hospitalar/diagnóstico , Infecção Hospitalar/epidemiologia , Coleta de Dados/normas , Registros Eletrônicos de Saúde/normas , Vigilância da População/métodos , Coleta de Dados/métodos , Processamento Eletrônico de Dados/métodos , Processamento Eletrônico de Dados/normas , Sistemas de Informação em Saúde , Hospitais Universitários , Humanos , Modelos Teóricos , Padrões de Referência , Sensibilidade e Especificidade , Espanha
13.
BMC Med Genomics ; 12(1): 145, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655597

RESUMO

BACKGROUND: Wild-type (wt) polyglutamine (polyQ) regions are implicated in stabilization of protein-protein interactions (PPI). Pathological polyQ expansion, such as that in human Ataxin-1 (ATXN1), that causes spinocerebellar ataxia type 1 (SCA1), results in abnormal PPI. For ATXN1 a larger number of interactors has been reported for the expanded (82Q) than the wt (29Q) protein. METHODS: To understand how the expanded polyQ affects PPI, protein structures were predicted for wt and expanded ATXN1, as well as, for 71 ATXN1 interactors. Then, the binding surfaces of wt and expanded ATXN1 with the reported interactors were inferred. RESULTS: Our data supports that the polyQ expansion alters the ATXN1 conformation and that it enhances the strength of interaction with ATXN1 partners. For both ATXN1 variants, the number of residues at the predicted binding interface are greater after the polyQ, mainly due to the AXH domain. Moreover, the difference in the interaction strength of the ATXN1 variants was due to an increase in the number of interactions at the N-terminal region, before the polyQ, for the expanded form. CONCLUSIONS: There are three regions at the AXH domain that are essential for ATXN1 PPI. The N-terminal region is responsible for the strength of the PPI with the ATXN1 variants. How the predicted motifs in this region affect PPI is discussed, in the context of ATXN1 post-transcriptional modifications.


Assuntos
Ataxina-1/metabolismo , Motivos de Aminoácidos , Animais , Ataxina-1/química , Ataxina-1/genética , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
14.
Front Plant Sci ; 10: 879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379893

RESUMO

Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.

15.
J Med Internet Res ; 21(8): e12610, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31411142

RESUMO

BACKGROUND: Nowadays, the use of social media is part of daily life, with more and more people, including governments and health organizations, using at least one platform regularly. Social media enables users to interact among large groups of people that share the same interests and suffer the same afflictions. Notably, these channels promote the ability to find and share information about health and medical conditions. OBJECTIVE: This study aimed to characterize the bowel disease (BD) community on Twitter, in particular how patients understand, discuss, feel, and react to the condition. The main questions were as follows: Which are the main communities and most influential users?; Where are the main content providers from?; What are the key biomedical and scientific topics under discussion? How are topics interrelated in patient communications?; How do external events influence user activity?; What kind of external sources of information are being promoted? METHODS: To answer these questions, a dataset of tweets containing terms related to BD conditions was collected from February to August 2018, accounting for a total of 24,634 tweets from 13,295 different users. Tweet preprocessing entailed the extraction of textual contents, hyperlinks, hashtags, time, location, and user information. Missing and incomplete information about the user profiles was completed using different analysis techniques. Semantic tweet topic analysis was supported by a lexicon-based entity recognizer. Furthermore, sentiment analysis enabled a closer look into the opinions expressed in the tweets, namely, gaining a deeper understanding of patients' feelings and experiences. RESULTS: Health organizations received most of the communication, whereas BD patients and experts in bowel conditions and nutrition were among those tweeting the most. In general, the BD community was mainly discussing symptoms, BD-related diseases, and diet-based treatments. Diarrhea and constipation were the most commonly mentioned symptoms, and cancer, anxiety disorder, depression, and chronic inflammations were frequently part of BD-related tweets. Most patient tweets discussed the bad side of BD conditions and other related conditions, namely, depression, diarrhea, and fibromyalgia. In turn, gluten-free diets and probiotic supplements were often mentioned in patient tweets expressing positive emotions. However, for the most part, tweets containing mentions to foods and diets showed a similar distribution of negative and positive sentiments because the effects of certain food components (eg, fiber, iron, and magnesium) were perceived differently, depending on the state of the disease and other personal conditions of the patients. The benefits of medical cannabis for the treatment of different chronic diseases were also highlighted. CONCLUSIONS: This study evidences that Twitter is becoming an influential space for conversation about bowel conditions, namely, patient opinions about associated symptoms and treatments. So, further qualitative and quantitative content analyses hold the potential to support decision making among health-related stakeholders, including the planning of awareness campaigns.


Assuntos
Neoplasias do Colo/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Síndrome do Intestino Irritável/psicologia , Mídias Sociais , Inquéritos e Questionários , Demografia , Saúde Global , Humanos
16.
J Cheminform ; 11(1): 42, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236786

RESUMO

BACKGROUND: Shared tasks and community challenges represent key instruments to promote research, collaboration and determine the state of the art of biomedical and chemical text mining technologies. Traditionally, such tasks relied on the comparison of automatically generated results against a so-called Gold Standard dataset of manually labelled textual data, regardless of efficiency and robustness of the underlying implementations. Due to the rapid growth of unstructured data collections, including patent databases and particularly the scientific literature, there is a pressing need to generate, assess and expose robust big data text mining solutions to semantically enrich documents in real time. To address this pressing need, a novel track called "Technical interoperability and performance of annotation servers" was launched under the umbrella of the BioCreative text mining evaluation effort. The aim of this track was to enable the continuous assessment of technical aspects of text annotation web servers, specifically of online biomedical named entity recognition systems of interest for medicinal chemistry applications. RESULTS: A total of 15 out of 26 registered teams successfully implemented online annotation servers. They returned predictions during a two-month period in predefined formats and were evaluated through the BeCalm evaluation platform, specifically developed for this track. The track encompassed three levels of evaluation, i.e. data format considerations, technical metrics and functional specifications. Participating annotation servers were implemented in seven different programming languages and covered 12 general entity types. The continuous evaluation of server responses accounted for testing periods of low activity and moderate to high activity, encompassing overall 4,092,502 requests from three different document provider settings. The median response time was below 3.74 s, with a median of 10 annotations/document. Most of the servers showed great reliability and stability, being able to process over 100,000 requests in a 5-day period. CONCLUSIONS: The presented track was a novel experimental task that systematically evaluated the technical performance aspects of online entity recognition systems. It raised the interest of a significant number of participants. Future editions of the competition will address the ability to process documents in bulk as well as to annotate full-text documents.

17.
BMC Evol Biol ; 19(1): 126, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215418

RESUMO

BACKGROUND: L-ascorbate (Vitamin C) is an important antioxidant and co-factor in eukaryotic cells, and in mammals it is indispensable for brain development and cognitive function. Vertebrates usually become L-ascorbate auxothrophs when the last enzyme of the synthetic pathway, an L-gulonolactone oxidase (GULO), is lost. Since Protostomes were until recently thought not to have a GULO gene, they were considered to be auxothrophs for Vitamin C. RESULTS: By performing phylogenetic analyses with tens of non-Bilateria and Protostomian genomes, it is shown, that a GULO gene is present in the non-Bilateria Placozoa, Myxozoa (here reported for the first time) and Anthozoa groups, and in Protostomians, in the Araneae family, the Gastropoda class, the Acari subclass (here reported for the first time), and the Priapulida, Annelida (here reported for the first time) and Brachiopoda phyla lineages. GULO is an old gene that predates the separation of Animals and Fungi, although it could be much older. We also show that within Protostomes, GULO has been lost multiple times in large taxonomic groups, namely the Pancrustacea, Nematoda, Platyhelminthes and Bivalvia groups, a pattern similar to that reported for Vertebrate species. Nevertheless, we show that Drosophila melanogaster seems to be capable of synthesizing L-ascorbate, likely through an alternative pathway, as recently reported for Caenorhabditis elegans. CONCLUSIONS: Non-Bilaterian and Protostomians seem to be able to synthesize Vitamin C either through the conventional animal pathway or an alternative pathway, but in this animal group, not being able to synthesize L-ascorbate seems to be the exception rather than the rule.


Assuntos
Ácido Ascórbico/metabolismo , Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , L-Gulonolactona Oxidase/genética , Animais , Drosophila melanogaster/genética , Eucariotos/classificação , Eucariotos/metabolismo , Genoma , L-Gulonolactona Oxidase/química , L-Gulonolactona Oxidase/metabolismo , Modelos Moleculares , Filogenia , Vertebrados/classificação , Vertebrados/genética
18.
Front Microbiol ; 10: 517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024464

RESUMO

This work presents a novel in silico approach to the prediction and characterization of the glycolytic capacities of the beneficial intestinal bacterium Faecalibacterium prausnitzii. Available F. prausnitzii genomes were explored taking the glycolytic capacities of F. prausnitzii SL3/3 and F. prausnitzii L2-6 as reference. The comparison of the generated glycolytic profiles offered insights into the particular capabilities of F. prausnitzii SL3/3 and F. prausnitzii L2-6 as well as the potential of the rest of strains. Glycoside hydrolases were mostly detected in the pathways responsible for the starch and sucrose metabolism and the biosynthesis of secondary metabolites, but this analysis also identified some other potentially interesting, but still uncharacterized activities, such as several hexosyltransferases and some hydrolases. Gene neighborhood maps offered additional understanding of the genes coding for relevant glycoside hydrolases. Although information about the carbohydrate preferences of F. prausnitzii is scarce, the in silico metabolic predictions were consistent with previous knowledge about the impact of fermentable sugars on the growth promotion and metabolism of F. prausnitzii. So, while the predictions still need to be validated using culturing methods, the approach holds the potential to be reproduced and scaled to accommodate the analysis of other strains (or even families and genus) as well as other metabolic activities. This will allow the exploration of novel methodologies to design or obtain targeted probiotics for F. prausnitzii and other strains of interest.

19.
Food Res Int ; 119: 221-226, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884651

RESUMO

This work reports on a large-scale potential neuropeptide activity screening in human gut microbiomes deposited in public databases. In our experimental approach, the sequences of the bioactive peptides collected in the MAHMI database, mainly predicted as immunomodulatory or antitumoral, were crossed with those of the neuroactive/digestive peptides. From 91,325,790 potential bioactive peptides, only 581 returned a match when crossed against the 5949 neuroactive peptides from the NeuroPep database and the 15 digestive hormones. Relevant bacterial taxa, such as Ruminococcus sp., Clostridium sp. were found among the main producers of the matching sequences, and many of the matches corresponded to adiponectin and the hormone produced by adipocites, which is involved in glucose homeostasis. These results show, for the first time, the presence of potentially bioactive peptides produced by gut microbiota members over the nervous cells, most notably, peptides with already predicted immunomodulatory or anti-inflammatory activity. Classical (Lactobacillus sp.) and next-generation (Faecalibacterium sp.) probiotics are shown to produce these peptides, which are proposed as a potential mechanism of action of psychobiotics. Our previous experimental results showed that many of these peptides were active when incubated with immune cells, such as dendritic cells, so their effect over the nervous system innervating the gut mucosa holds significant potential and should be explored.


Assuntos
Simulação por Computador , Microbioma Gastrointestinal , Neuropeptídeos/metabolismo , Adipócitos/metabolismo , Adiponectina/metabolismo , Clostridium/classificação , Clostridium/isolamento & purificação , Clostridium/metabolismo , Bases de Dados Factuais , Humanos , Ruminococcus/classificação , Ruminococcus/isolamento & purificação , Ruminococcus/metabolismo
20.
Comput Biol Med ; 107: 197-205, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30849608

RESUMO

BACKGROUND: Transcriptomics profiling aims to identify and quantify all transcripts present within a cell type or tissue at a particular state, and thus provide information on the genes expressed in specific experimental settings, differentiation or disease conditions. RNA-Seq technology is becoming the standard approach for such studies, but available analysis tools are often hard to install, configure and use by users without advanced bioinformatics skills. METHODS: Within reason, DEWE aims to make RNA-Seq analysis as easy for non-proficient users as for experienced bioinformaticians. DEWE supports two well-established and widely used differential expression analysis workflows: using Bowtie2 or HISAT2 for sequence alignment; and, both applying StringTie for quantification, and Ballgown and edgeR for differential expression analysis. Also, it enables the tailored execution of individual tools as well as helps with the management and visualisation of differential expression results. RESULTS: DEWE provides a user-friendly interface designed to reduce the learning curve of less knowledgeable users while enabling analysis customisation and software extension by advanced users. Docker technology helps overcome installation and configuration hurdles. In addition, DEWE produces high quality and publication-ready outputs in the form of tab-delimited files and figures, as well as helps researchers with further analyses, such as pathway enrichment analysis. CONCLUSIONS: The abilities of DEWE are exemplified here by practical application to a comparative analysis of monocytes and monocyte-derived dendritic cells, a study of clinical relevance. DEWE installers and documentation are freely available at https://www.sing-group.org/dewe.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Pesquisa Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...